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The long-term aim of this work is to define the operational limits of the Australian
Army Chinook CH-47D when carrying mixed density slung loads. This paper presents
the first phase in the program: the development of a simple helicopter slung-load model
for simulation and analysis of the system dynamics.

General system equations of motion are obtained from the Newton-Euler equations in
terms of generalised position and velocity coordinates. The coordinates are partitioned
such that the motion due to cable stretching is separated from that due to rigid-body,
coupled dynamics. In the formulation used, the constraint forces appear explicitly and an
inelastic solution to the resultant generalised accelerations is determined by nulling the
stretching coordinates to obtain a relation for the suspension forces.

The model is verified by imposing certain constraints in order to approximate a simple
pendulum system and then comparing its behaviour against analytical results. A complete
helicopter slung-load system, based on a CH-47B helicopter carrying a standard military
container, is then examined in an investigation of the open-loop characteristics. In the
investigation, several parameters such as the load-to-helicopter mass ratio are varied and
the resulting system modes examined.

Nomenclature
A square 6n×6n matrix defining the kine-

matic relation, v = Au
A1, L column partitions of A for elastic and

inelastic components of the suspension
AI1T , ΛT corresponding row partitions of A−1

D block-diagonal matrix comprising the
system’s rigid-body masses and inertias

fg,fa,fc,f∗ vectors of the forces and moments on
each body due to gravity, aerodynam-
ics, suspension, and inertia reactions, re-
spectively

Fa reference frame; a = N for Newto-
nian space, a = i for axes of body Bi
(i = 1, 2, . . . , n) or a = cj for cable axes
of cable Cj (j = 1, 2, . . . ,m)

H matrix which is a basis of the linear vec-
tor space containing fc

m number of suspension cables
mi, Ji mass and body-axes inertia matrices for

body Bi
n, d, c number of rigid bodies, degrees of free-

dom, and constraints in the inelastic sys-
tem, respectively

q, u generalised position and velocity coordi-
nates for the unconstrained system

q1,λ generalised position coordinates defining
the inelastic and elastic components of
the system motion

u1,λ̇ generalised velocity coordinates defining
the inelastic and elastic components of
the system motion

r, v vectors of inertial cg position and Euler
angle attitudes, and the inertial cg ve-
locities and angular velocities

†Research Scientist, Air Operations Division.

s vector of suspension force parameters
Wii matrix transformation of angular veloc-

ities, ωii to α̇i, for body Bi
X vector containing moments due to Cori-

olis effects on each body
δ vector of control inputs for each body

( )T transpose operator
diag{ } block-diagonal matrix comprised of

listed elements aligned on main-diagonal
( )a physical vector given by its coordinates

in the frame Fa

S(Va) skew-symmetric matrix representing
cross-product operation for vectors, V ,
referred to Fa

( )∗ quantity associated with the cg of a rigid
body in the system

�z gradient vector of partial derivatives
with respect to z

Introduction

THE operations of helicopters carrying externally
slung loads has often been limited and, in some

cases, seriously hindered by stability and control prob-
lems. Several incidences have been reported by the
Australian Army alone in which aerodynamic excita-
tion or dynamic instability, resulting in uncontrollable
oscillations, has forced premature release of the load.
A program was consequently initiated within the

Defence Science and Technology Organisation (DSTO)
to use computer modelling and simulation to assist in
defining the operational limits of the Australian Army
Chinook CH-47D when carrying slung loads. The first
phase in this program has entailed the development
of a simple helicopter slung-load model for simulation
and analysis in order to provide a better understanding
of the system dynamics and various effects involved.
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A selection of the results from this work is presented
herein. In the second phase, a comprehensive slung-
load model is to be developed for integration into a
real-time helicopter simulation model. The simulation
model will incorporate additional detail, such as the
automatic flight control system, load aerodynamics,
rotor wake effects, and sling elasticity. Furthermore,
there is a requirement to model the dynamics of the
helicopter with multiple slung loads of varying density
and aerodynamic properties, which has not previously
been investigated in this manner.

Background in Simulation
There has been a small but significant amount of

work done in investigating the behaviour and control
of helicopter slung-load systems. In the 1960’s and
early 1970’s, most of this effort was concentrated in
analytical studies, including various stabilisation sys-
tem designs. Wind-tunnel and flight-test experiments
were mainly limited to the establishment of operational
limits based on gross aerodynamic instabilities. With
the advancement of digital computing, however, came
the ability to create more complex analytical models
and perform dynamic simulations. This increase in the
complexity of the system led to a requirement for bet-
ter aerodynamic models – both helicopter and load –
and the emphasis in experimental work shifted accord-
ingly. These days, there is still some analytical work
being done, particularly in the design of automatic con-
trol systems, but much of the research is now based on
simulation.
In recognition of suspension-related problems en-

countered with the carriage of external cargo by
helicopters, the US Army in 1970 initiated a pro-
gram aimed at the establishment of design criteria
for sling members and attachment points. This pro-
gram, as well as many subsequent investigations, were
undertaken by the Eustace Directorate, US Army
Air Mobility Research and Development Laboratory
(USAAMRDL). Part of the first phase in the con-
tract, reported by Briczinski and Karas,1 involved the
computerised simulation of a helicopter and external
load in real time with a pilot in the loop. Load aero-
dynamics were incorporated into the model, as well as
rotor-downwash effects in hover.
Soon after this, in 1973, Liu2 conducted an exten-

sive study to select the best technical approaches for
stabilising a wide spectrum of externally slung heli-
copter loads at forward speeds. The simulation model
used extended that of Abzug3 to include load aerody-
namics. Several stabilisation systems were evaluated
using a moving-base simulator and, of those, an elec-
tronic system providing rate and acceleration inputs
to the helicopter stability augmentation system (SAS)
was favoured.
Following the first program of work sponsored by the

Eustace Directorate, a further study to define impor-
tant flight control system design and handling qualities
criteria for moving loads slung beneath tandem-rotor
helicopters was conducted in 1974 by Kesler, et al .4 It
included theoretical analyses, acquisition, and evalua-

tion of both wind-tunnel and flight-test data, analysis
of various problems, and the actual flight simulation
of a Boeing-Vertol Model 347 advanced tandem-rotor
helicopter with an external load. Another program
under the same sponsorship, investigated by Alansky,
et al ,5 looked into the quantitative limitations of the
CH-47 helicopter performing terrain flying with exter-
nal loads. The simulation used in this investigation
comprised a fully coupled total force and moment
model and an alternative method of load position-
control, named the Active Arm External Load Sta-
bilisation System (AAELSS).
In 1979, a generalised real-time, piloted, visual sim-

ulation of a single-rotor helicopter, suspension sys-
tem, and external load was developed by Shaughnessy,
et al6 and subsequently validated for the full flight en-
velope of a Sikorsky CH-54 Skycrane helicopter and
cargo container. The mathematical model described
used modified nonlinear classical rotor theory for both
the main rotor and tail rotor, nonlinear fuselage aero-
dynamics, an elastic suspension system, nonlinear load
aerodynamics, and a load-ground contact model.
Later, in 1980, Sampath7 completed his dissertation

on the dynamics of a tandem-rotor helicopter slung-
load system, which involved modelling and simulation
work as well as experimental wind-tunnel tasks. In his
formulation, Lagrange’s equations were used to write
the equations of motion and were divided into two
sets: one for the towing vehicle and the other for the
slung load. The cables of the sling were modelled as
massless linear springs with viscous damping and no
aerodynamic properties. The aerodynamic models for
the helicopter and load were both implemented using
tabulated static data. In 1984, a full nonlinear simu-
lation model of the CH-47B helicopter, developed by
the Boeing Vertol Company, was adapted for use in
the NASA Ames Research Center (ARC) simulation
facility by Weber, et al .8 The mathematical model
developed was based on a total force approach in 6
rigid-body DOF along with the option for an externally
suspended load in 3 DOF. The aerodynamic models
were also quite comprehensive, including steady-state
rotor flapping and load aerodynamic effects.
In 1986, Ronen, et al9 developed a new model for a

helicopter carrying a sling load on a single point sus-
pension in order to improve on the existing dynamic
models and investigate the open-loop characteristics of
the system. For the first time, the model took into ac-
count the effects of rotor downwash on the load and the
unsteady aerodynamics of bluff-body type loads. The
nonlinear equations of motion were derived and then
separated into two sets: the nonlinear trim equations
and the linearised equations for small perturbation
about the equilibrium state.
Some of the most recent work in the simulation

of helicopter slung-load systems has been conducted
by Cicolani and Kanning, et al10, 11 at the NASA
Ames Research Center. In these reports, the general
simulation equations were derived for the motion of
slung-load systems consisting of several rigid bodies
connected by straight-line cables or links, assumed to
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be either elastic or inelastic. A formulation for the
general system was obtained from the Newton-Euler
rigid-body equations with the introduction of gener-
alised velocity coordinates. The same approach for
simulating helicopter slung-load dynamics has been
adopted in the current task. Following this paper, a
DSTO Technical Report will present the implementa-
tion of the equations in more detail, including their
extension to the case of multiple slung loads.

System Dynamics
System Description

Helicopter slung-load systems fall into a class of
multibody systems consisting of two or more rigid
bodies connected by massless links. The links can
be considered either elastic or inelastic, although the
rigid-body assumption excludes any helicopter or load
elastic modes. Typically, the system is characterised
by the configuration geometry, mass, inertia, and aero-
dynamic behaviour of both helicopter and load, as well
as the elastic properties of the links.
In general terms, the system of interest consists of

a single helicopter supporting one or more loads by
means of some suspension. Several examples of the
various configurations under consideration are illus-
trated in Figure 1. The model is comprised of n rigid
bodies, with m straight-line links supporting a single
force in the direction of the link. For cables, this is
strictly a tensile force – cable collapse is not consid-
ered. If the links are modelled as inelastic, c ≤ m
constraints are imposed on the motion of the bodies
and the system has d = 6n − c DOF. If the links are
modelled as elastic, there are 6n DOF.
In the model used, a number of simplifying assump-

tions were made. These included the exclusion of cable
aerodynamics and rotor-downwash effects. Further-
more, load aerodynamics have been neglected for this
initial stage of the work program. Despite these limi-
tations, the system defined above has proven adequate
for simulation studies11 in which the low-frequency be-
haviour is of primary interest.

Generalised Equations of Motion

The simulation model used for this first stage of work
was based on the helicopter slung-load system intro-
duced by Cicolani, et al .12 In this formulation, the
general system equations of motion are obtained from
the Newton-Euler equations in terms of generalised
coordinates and velocities. Following the explicit con-
straint method, which utilises d’Alembert’s principle,
the system is partitioned into coordinates such that
the motion due to cable stretching is separated from
that due to rigid-body, coupled dynamics. As a con-
sequence, the constraint forces appear explicitly and
a solution to the resultant generalised accelerations is
determined by assuming a simple spring model for the
cable.
It is also possible to obtain a solution to the inelas-

tic approximation by nulling the stretching coordinates
to obtain an explicit relation for the suspension forces.
The result is computationally more efficient than con-
ventional procedures and is readily integrated with the

Fig. 1 Single Point Slung-Load Configurations

formulation for elastic suspension. Another benefit of
the formulation is that it is easily applied to com-
plex, multiple body systems, as in the current work.
To date, all code development has been done in the
MATLAB numerical computing environment, which
provides a high-performance language, amenable to
modelling and simulation type work.

Solution to Constrained System

The Newton-Euler equations of motion for a system
of n rigid bodies can be expressed in 6 DOF as

mi gN + FAiN + FCiN −mi V̇ i∗N = 0
MAii +MCii − Ji ω̇ii − S(ωii)Ji ωii = 0

(1)

In this expression, the first set of equations repre-
sents the balance of translational forces, referred to
inertial axes as indicated by the subscript N . The
second set represents the sum of moments about each
body’s cg, referred to the corresponding axes as indi-
cated by the subscript i = 1, 2, . . . n. Both equations
consist of several terms, including the forces and mo-
ments due to gravity, aerodynamics, and inertia. The
first term, mi gN , is the gravity force acting through
each cg, FAiN and MAii are the aerodynamic forces
and moments, and FCiN and MCii are the cable
forces and moments, respectively. The terms, mi V̇ i∗N
and Ji ω̇ii constitute the inertial reaction of each body
and S(ωii)Ji ωii is the moment induced by Coriolis’
effect.
It is convenient to write these equations as a single

expression in matrix form. This is achieved by defin-
ing the configuration position vector, r, which lists the
rigid-body cg positions for each body and Euler angle
rotations for each body. Similarly, the configuration
velocity vector, v, lists the translational velocities and
body-axis angular rates.
Using fg, fa, fc, and f∗ for the combined force

and moment vectors due to gravity, aerodynamics, ca-
ble suspension, and inertia reactions, the equations of
motion can be written as

fg + fa+ fc+ f∗ = 0 (2)

where

f∗ = −Dv̇ −X (3)

Here, D is a block-diagonal matrix comprising
masses and inertias along the main diagonal, v̇ is the
configuration acceleration, and the vector X contains
the Coriolis terms.
In order to derive a set of simulation equations for

the system, a solution to the equations of motion de-
scribed above must be found in terms of the configura-
tion acceleration. For the helicopter slung-load system
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under consideration, it is useful to first formulate a
set of generalised coordinates and velocities which de-
scribe the motion of the inelastic system and the effect
of cable stretching as two distinct subsets. The cable-
constraints on the helicopter slung-load system can be
considered holomonic, that is, they are independent
functions of position only. In addition, for the follow-
ing system, the constraints are posed as time-invariant.
The special cases of cable winching and attachment
point movement are not considered.
The system can be partitioned according to the 6n

generalised position coordinates as

q =
[

q1
λ

]
(4)

where q1 is the list of d position coordinates for a
system with inelastic suspension and λ are the c co-
ordinates which describe the variation in cable length
due to stretching. The configuration velocity can be
expressed as a linear function of the generalised veloc-
ity coordinates, that is,

v = Au (5)

where

u =
[

u1
λ̇

]
and A =

[
A1
L

]
(6)

Differentiating equation (5) and substituting v̇ into
equation (3) yields

f∗ = −DȦu−DAu̇−X (7)

Now, replacing f∗ in equation (2), a simplified ver-
sion of the equations of motion can be written as

fo+ fc−DAu̇ = 0 (8)

where the vector fo, the sum of all external forces and
inertial coupling terms, is given by

fo = fg + fa−DȦu−X (9)

Since the system has been specified in terms of its
generalised coordinates, A is a square 6n× 6n nonsin-
gular matrix and a solution for the generalised accel-
eration coordinates exists. From equation (8),

u̇ = A−1D−1[fo+ fc] (10)

It should be noted here that the inverse matrix
A−1 simply represents the relation u(v), which can be
derived analytically from the kinematics, just as the
matrix A represents v(u). In partitioned form, the ac-
celeration equation may be written as

[
u̇1
λ̈

]
=

[
AI1T

ΛT

]
D−1[fo+ fc] (11)

where AI1T and ΛT are the 6n− c and c rows of A−1

which define the inelastic and elastic acceleration com-
ponents, u̇1 and λ̈, respectively.

The last step required in determining a solution for
the generalised accelerations is to calculate the con-
straint force, fc. For a system with c constraints, the
constraint force can be expressed as

fc = Hs (12)

where the columns of the matrix H are configuration
vectors and rank{H} = c. The elements of the vector
s are arbitrary scalars. The exact form of this equa-
tion and its solution depend on whether the cables are
considered elastic or not.
For a general elastic system, the suspension forces

can be given as the sum of forces and moments applied
at each attachment point by the suspension cables.
The tension in each cable can be represented by a sim-
ple spring model.
For an inelastic system, it can be shown that the

columns of H and Λ both form bases of the same linear
vector space and therefore Λ can be used to define the
constraint force, that is,

fc = Λs (13)

where the vector s will have units of force if the co-
ordinates λ are lengths. To find a solution for the
inelastic system, the constraint acceleration, λ̈, is set
to zero. Substituting into the elastic component of
equation (11) gives

0 = ΛTD−1[fo+ Λs] (14)

the solution to which is

s = −[ΛTD−1Λ]−1ΛTD−1fo (15)

Hence, the constraint forces can be calculated and
the generalised accelerations solved using equation
(10).

Simulation of System Dynamics

Prior to executing the simulation, several compo-
nents must be customised to the helicopter slung-load
configuration of interest.
The first step in setting up the simulation equations

involves determining the constraints of the inelastic
system and then defining the generalised velocity coor-
dinates (u1, λ̇). Using these coordinates in kinematic
relations for the system, it is then possible to obtain
expressions for the system matrices, A, A−1, and Ȧ.
The selection of appropriate coordinates is case spe-
cific; however, it is possible to choose them so that they
consist largely of natural vectors. In most applications,
including that discussed in this paper, u is comprised
of the cg velocity of a reference body (typically the heli-
copter), the cable velocities, and the angular velocities
of all bodies including both helicopter and loads.
Next, an appropriate representation for the suspen-

sion cables must be chosen. For inelastic cables, fc is
calculated from any basis of the constraint force space,
Λ, and the corresponding constraint force parameters,
s, as in equation (13).
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Fig. 2 Simulation Flow Diagram

For the last step, the aerodynamic and inertial prop-
erties of the both helicopter and loads need to be imple-
mented in the model. For most rigid bodies, the aero-
dynamic forces and moments are a function of the con-
figuration velocities and displacements, v and r, and
the control inputs, δ. Typically, the helicopter aero-
dynamic model neglects position- and acceleration-
dependant effects, such as interbody/ground interfer-
ence and unsteady aerodynamics. However, these are
often secondary in nature and the resulting model is
adequate for simulation under most conditions. Aero-
dynamic models for loads, which are generally un-
steady and of much higher order, are less well under-
stood or replicated.
Once the system has been configured, the dynamic

simulation can proceed. First, the initial state, (u, r),
and the trim state, (u0, r0), must be set. Then the
integration loop is started and the following steps are
executed in sequence, according to the flow-diagram of
Figure 2:

1. Determine the aerodynamic force, fa, inertia and
Coriolis forces, f∗, and gravity force, fg, all in
inertial axes. Assuming the aerodynamic model is
written in body axes, an angular transformation
will be required for fa. The configuration velocity,
v, can be calculated from the generalised velocity,
u, using the kinematic matrix, A.

2. Sum the external forces, fa, f∗, and fg to yield
the configuration force, fo.

3. Using the configuration force along with matrices
derived from the current state, (u, r), and the con-
figuration geometry, solve the cable force, fc, for
either elastic or inelastic suspension models.

4. Compute the generalised accelerations, u̇, from
the inverse kinematic matrix, A−1, and the in-
verse mass matrix, D−1.

5. Compute the velocity, ṙ, from the configuration
velocity and inverse transformation matrix, W−1.

6. Apply an integration step to predict the new state,
(u, r), and repeat the sequence.

At this early stage, all code development has been
done in the MATLAB13 numerical computing envi-
ronment, which provides a high-performance language
amenable to modelling- and simulation-type work. It
is important to stress that this pilot simulation was
not intended to run in real-time, but rather produce
the appropriate output for subsequent replay and anal-
ysis. At a later stage, the code will be ported to
a platform-specific compiled language suitable for pi-
loted, real-time simulation.
The Helicopter Slung-Load Simulation program,

HSLSIM, consists of several modules. These includ-
ing the main script, integration function, differential
equation solution, aerodynamic model, and various
output and replay functions. The simulation is run
through the main script, which generates the control
inputs, configures the helicopter-load system proper-
ties (geometric and inertial), sets the initial system
state, and then executes the integration function. The
integration function, ODE45, is problem independent
and based on an algorithm which combines 4th and
5th order Runge-Kutta formulas for ordinary differen-
tial equations. It requires a function tailored to the
problem at hand, which provides a point solution to
the differential equation. For the helicopter slung-
load simulation, this function represents the core of
the code and implements much of the above flow di-
agram. The aerodynamic models for both helicopter
and loads are called from within this function. They
can be as simple or as complex as desired, but must
output total force and moment variables. Hence, if
small-perturbation aerodynamic models are to be used,
they must be augmented with the corresponding trim
forces and moments. The cable elastic model can also
be implemented as a separate function, although this
was not done, since the spring-damper model is fairly
standard and easily included in the solution function.
Following summation of the external forces and solu-
tion of the internal (cable) forces, the solution function
computes the generalised accelerations and velocities,
(u̇, ṙ), at the current state. This point solution is
passed to the integration function and the simulation
loop continues.
It is also possible to calculate a linear model by nu-

merical approximation of the Jacobians �uu̇ and �δu̇
from the nonlinear system.
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This model will have the form

u̇ = [�uu̇]u+ [�δu̇]δ (16)

and can be used for an alternative linear simulation
about the trim state. Another use is in various lin-
ear system analyses, such as the determination of the
natural modes, as will be discussed in the following
section.

Analysis of Model Behaviour
The open-loop behaviour of the simulation model

developed was analysed at two levels of complexity.
First, the system was approximated by an equivalent
pendulum model in order to investigate the dynamics
of the load itself. Second, a fully coupled helicopter
slung-load model was constructed to assess the gen-
eral behaviour and effect of various parameters on the
system dynamics.
The simulation was verified for both models using

the system given by Ronen9 for a 35000 lb CH-53D
helicopter with a single slung load. The aerodynamic
stability derivatives used were obtained from Heffley,
et al14, with several small modifications made as re-
ported by Ronen. Since the aim of this analysis was
simply to determine the modes of oscillation for the
helicopter slung-load system, the Automatic Flight
Control System (AFCS) was not implemented.
The slung load chosen was a standard military con-

tainer, known as a MILVAN, which is a common he-
licopter cargo used in many commercial and military
operations. The dimensions of a MILVAN container
are 20×20×8 ft and the mass typically varies from
4000 lb (empty) to 20000 lb (full).

Simple Pendulum-type System

The first phase of the analysis involved an inves-
tigation into the dynamics of simple pendulum-type
systems. For this purpose, the full helicopter slung-
load simulation model developed was constrained so
as to approximate a two-body pendulum system. Fur-
thermore, the aerodynamic effects of both helicopter
and load were excluded from the model.
In order to verify the simulation developed, a num-

ber of accuracy checks were made within the code
itself, such as the requirement λ̈ = 0 for inelastic sus-
pension. Comparisons were also made against those
previously reported in a numerical example given by
Ronen.9 In addition, analytical results were calculated
for the modes of similar pendulum systems.
In this example, the load-to-helicopter mass ratio, η,

was set to 0.05. The sling configuration used consisted
of a single pendant suspension and bridle, similar to
the first system of Figure 1. The total length between
the helicopter attachment point and the load cg was
25 ft and the bridle-to-sling length ratio was 0.4.
For the system examined, there are two modes in

both longitudinal and lateral axes. Essentially, the low
frequency mode is associated with the pendulous mo-
tion of the load along the total sling length. The higher
frequency mode is associated with the coupled pitch-
ing (or rolling) motion of the load and bridle and the

pendant suspension. Values for the natural frequencies
obtained from the analytical formulation and the sim-
ulation programs are listed in Table 1. The analytical
results were obtained from the characteristic equation
for a simple two-body pendulum system. Natural fre-
quencies generated by the simulation code HSLSIM
are shown for two conditions. One was constrained so
as to approximate the pendulum system used in the
analytical derivation, which for the longitudinal case
included constraints in translation along both y and z
axes and constraint in rotation about the y axis. The
other model was free to move in all axes, providing
a closer approximation to the real system. The fre-
quencies obtained in the analysis by Ronen, using the
simulation code EOMPROG, are also shown.

Table 1 Longitudinal Pendulum Natural Frequen-
cies for the CH-53D and MILVAN System in Hover

Frequencies (rad/s)
Technique

1st Mode 2nd Mode

Analytical 1.12 3.86
HSLSIM (Constrained) 1.12 3.86
HSLSIM (Free) 1.15 3.86
EOMPROG9 (Free) 1.14 3.84

Table 2 Lateral Pendulum Natural Frequencies for
the CH-53D and MILVAN System in Hover

Frequencies (rad/s)
Technique

1st Mode 2nd Mode

Analytical 1.15 7.17
HSLSIM (Constrained) 1.16 7.17
HSLSIM (Free) 1.25 7.18
EOMPROG9 (Free) 1.24 7.14

Agreement between the analytical results and the
constrained model is very good. However, there are
some small discrepancies between these results and
those obtained for the unconstrained models. This can
be explained by an additional coupling effect in the
unconstrained models, as the sling force at the attach-
ment point produces a moment about the helicopter
cg. The effect is more prominent in the lateral case,
since the helicopter moment of inertia is much lower in
that axis. Differences between the unconstrained mod-
els generated in HSLSIM and EOMPROG are under-
standable, as they were generated by two different ap-
proaches. The simulation code HSLSIM incorporates
a full nonlinear representation of the helicopter slung-
load system, which was linearised numerically about
the trim state to obtain a Jacobian matrix for model
analysis. Using this approach would therefore incur
errors in the numerical approximation. EOMPROG,
on the other hand, is based on an explicitly linear
small-perturbation formulation and consequently er-
rors would arise from such simplification as the small
angle assumptions and the exclusion of higher order
terms.
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Fig. 3 Variation of CH-47B + Load System Eigen-
values with Load-to-Helicopter Mass Ratio

Helicopter Slung-Load System

In this phase, the complete helicopter slung-load sys-
tem, based on a Chinook CH-47B carrying a standard
military container, was examined in an investigation of
the open-loop characteristics. The models used were
obtained through numerical linearisation of the full
nonlinear system, as previously explained. Neither the
load aerodynamics, nor the effect of rotor downwash
on the dynamics of the load were taken into account.
Several parameters such as the load-to-helicopter mass
ratio, suspension configuration, and number of loads
were varied and the resulting system modes examined.
Only the first set of results has been included here. The
complete set will be detailed in a forthcoming DSTO
report.
A multiple-cable configuration similar to the second

system of Figure 1 was used in this analysis. Eigenval-
ues for the decoupled longitudinal and lateral models
at 0.1 KTAS were calculated for a range of values in
the load-to-helicopter mass ratio (0.1 to 1.0) and are
presented in Figure 3.
The longitudinal motion consists of essentially four

modes: pitch subsidence, heave, load pendulum, and
phugoid. The pitch subsidence and heave are pure-
damping modes, whereas the phugoid and load pen-
dulum modes also have oscillatory components. The
damping of these former two modes can be seen to

reduce with an increase in the mass ratio. The load
pendulum mode, which describes the motion of the
load with respect to the helicopter, changes quite con-
siderably with the mass ratio. For low ratios (small
load mass), this mode behaves much like a simple
pendulum independent of the helicopter motion, with
corresponding frequency. As the mass ratio is in-
creased, the inertia of the load becomes more signif-
icant and the frequency increases similar to an equiv-
alent double-pendulum system. The unstable phugoid
mode is characteristic of most aircraft and, for heli-
copters, describes a long-period ‘swinging’ motion in
which the forward velocity and attitude oscillate 180◦

out of phase. There is little change in this mode, save
a slight decrease in frequency with an increase in the
mass ratio.
The decoupled lateral motion also consists of four

modes: roll subsidence, yaw subsidence, pendulum,
and phugoid. In this case, the roll and yaw subsi-
dence modes are pure damping. The lateral phugoid
and pendulum modes are similar to their longitudinal
counterparts and have oscillatory components. The
damping of the roll mode reduces significantly with
an increase in the mass ratio. The pendulum mode
also becomes slightly more stable and increases in fre-
quency, much like the longitudinal pendulum mode.
However, the frequency is generally much higher, be-
cause of the difference in the moments of inertia about
x and y axes. Perhaps the most important feature of
this behaviour is the variation in the phugoid mode.
Unlike the longitudinal case, the phugoid mode be-
comes much more unstable with an increase in the
mass ratio. This mode will have the greatest effect
on the system dynamics and thus helicopters carrying
heavy loads will generally require a greater degree of
lateral control.
Further to the modal analysis, a number of simu-

lations were run in order to demonstrate the typical
behaviour of the helicopter slung-load system. One
such simulation is illustrated in Figures 4 and 5 for
a multiple-load configuration with individual attach-
ment points and single cable slings.
In these plots, u and w are the velocities in x and z

directions of the body axes, respectively, q is the pitch
rate, θ is the pitch angle, and θc is the cable angle
displaced from the vertical position. The cable ten-
sion force, nondimensionalised by the load weight, is
denoted by fc. For this simulation, the helicopter and
slung loads were given an initial forward velocity of
80 ft/s and the loads were displaced from their static
equilibrium positions by arbitrary amounts. The con-
trols were held fixed throughout the 10 second manoeu-
vre. Both primary and secondary pendulum modes can
be identified in the response of each load, most notably
in the cable angle displacement. In general, the sys-
tem behaved as expected, with the momentum of each
load – functions of θc – feeding into the longitudinal
acceleration of the helicopter, and vice versa. It is also
worth noting that the peaks in the cable tensions cor-
respond to the extrema of the pitch rates and have a
maximum value of up to 1.2 times their static load.
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Fig. 5 CH-47B Response Simulation

Concluding Remarks
A simulation model was produced using the equa-

tions of motion for general slung-load systems devel-
oped by Cicolani, et al .12 The formulation used is
based on the Newton-Euler equations written in terms
of generalised coordinates and can be readily adapted
to systems with either elastic or inelastic suspension.
All code development, including the simulation rou-
tine, linear analysis, and graphical replay tools, has
been done in MATLAB. Further to the model de-
scribed, the simulation has also been extended to in-
corporate multiple-load systems.
Following validation of the code against both analyt-

ical solutions and previously pubilshed results, using a
simple pendulum-type system, the open-loop charac-
teristics of a full helicopter slung-load system was ex-
amined. The results presented include modal analysis
of a single-load system and simulation of a multiple-
load system. It was found that the frequency of the
longitudinal and lateral pendulum modes generally in-
creases with the load-to-helicopter mass ratio. More
importantly, the lateral phugoid becomes significantly
more unstable as the mass ratio is increased. For the
simulation demonstrated, the dominant natural fre-
quencies were identified.
This paper presents only a broad overview of the

generalised equations and some selected results from
the system analysis. The full details of the simula-
tion model and various analyses will be published in a
forthcoming DSTO report.
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