A Genetic Approach To Modelling Flight Dynamic Characteristics

P J Gage *

Abstract

There are several parameter identification tech-
niques that are commonly used for the determi-
nation of the dynamic characteristics of flight ve-
hicles. Standard genetic algorithms have been
used previously for parameter identification, and
successfully identified globally optimal parameter
sets. In this paper, we examine the use of ge-
netic programming for system identification, and
explore the automatic discovery of equation struc-
tures rather than simply determining coeflicient
values in models of specified form. The trajectory
of a ballistic weapon is successfully modelled, but
work remains to generate equations that are more
physically relevant, and to improve efficiency of
search.

Abbreviations

AMRL

Aeronautical and Maritime
Research Laboratory

AOD Air Operations Division

BCU Ballistic Computer Unit

DSTO Defence Science and Technology
Organisation

FCL Flight Control Law

MMLE3 Maximum Likelihood Parameter
Estimation Program, Number 3

NASA National Aeronautics and Space
Administration

OFP Operational Flight Program

PC Personal Computer

RAAF Royal Australian Air Force

*Australian Defence Force Academy, Member AIAA

TAOD, AMRL, Member ATAA

0
Copyright ©1997 by the Commonwealth of Australia. Pub-
lished by the American Institute of Aeronautics and Astro-
nautics, Inc. with permission.

R A Stuckey |

J S Drobik 1

1 Introduction

In order to identify the stability and control char-
acteristics of aircraft from flight data, known in-
puts must be applied and the responses measured.
From this data, a set of equations can be devel-
oped and various parameters estimated to model
the relationship between input and output. For
standard configurations operating in linear flight
regimes, the form of these equations is well known,
and generally only the coefficients of each term
need be identified. However, for unconventional
designs such as the X-29 [1], or extreme flight con-
ditions, the appropriate form of the model must
be established before the coeflicients can be deter-
mined.

Several parameter identification methods are
available for determining coefficient values in the
standard equations, including regression, maxi-
mum likelihood, filter error, and neural networks.
The features of these methods and their range
of application are discussed in several survey pa-
pers [2] [3] [4]. Despite the widespread success
of these methods, there is a continuing search for
improved techniques. Anderson et al. [6] cite the
excessive data requirements of regression analy-
sis as a factor that motivates them to investi-
gate the performance of standard genetic algo-
rithms in parameter identification tasks. The
search space for an error minimization task is typ-
ically multimodal, so local search algorithms such
as the maximum likelihood method may not find
the global minimum, whereas genetic optimization
works well in such domains [5].

When the appropriate form of the flight dynam-
ics equations is unknown, the standard tools, and
even standard genetic algorithms, are less useful.
Stepwise regression can be used to produce a par-
simonious model, by adding or removing terms
according to their correlation [7], but it works
only with terms of pre-determined form. Neural
networks generate black box models that are of

novel form, but no physical significance can be at-
tributed to the terms (or combinations of weights
and links) generated in this way [2]. The ge-
netic programming paradigm falls between these
extremes, because it permits the user to choose a
set of physically significant basis functions that are
automatically recombined to produce novel equa-
tions which include nonlinear terms. This method
has been implemented successfully in simple func-
tion identification applications [8], where physi-
cally meaningful equations have been automati-
cally generated. In this paper, genetic program-
ming is used to model the behaviour of a simple
flight vehicle: a ballistic weapon.

In the next section, a general description of ge-
netic optimization is provided, with discussion of
the features of genetic programming that make
it particularly well-suited to this task. This is
followed by a brief review of applications of ge-
netic optimization for system modelling. Section
4 describes the use of genetic programming for a
simple identification task, and explores the impor-
tance of various parameter settings on optimiza-
tion performance. The method is then used to
generate equations describing a weapon trajectory,
to establish a basis of comparison with standard
genetic algorithms. The paper concludes with a
discussion of genetic programming performance,
and recommendations for further work.

2 Genetic Optimization

Genetic algorithms are global search methods
which use operators modelled on biological re-
productive mechanisms observed in the natural
world [9]. A wide variety of exotic genetic op-
erators have been devised, but a few fundamen-
tal features are common to most genetic algo-
rithms: population, evaluation, selection, encod-
ing, crossover and mutation.

2.1 Essential Features

The genetic search procedure is initialized by ran-
domly generating a population of candidate de-
signs. These candidates should provide a sta-
tistically meaningful sample of the global search
space. The population size should therefore be
sufficiently large to avoid significant error.

Any search for improvement requires a metric
for assigning relative merit, or performance, to al-
ternative designs. Genetic algorithms require the
calculation of fitness for each member in a popu-
lation. For flight vehicle system identification,it
is common to minimize either equation or out-
put error, and either value can be used as the
basis of a fitness metric for genetic optimization.
The optimal solution minimizes error, whereas fit-
ness should be maximized, so the fitness function
should be inversely related to error. Equation 1
assures fitness values in the range [0,1], with the
ideal (zero error) case producing a fitness value of
1.

1
Fitness = ————— (1)
1+ Error

Selection rewards high-fitness designs in a popu-
lation of candidates, by assigning a relatively high
probability that they will be chosen for reproduc-
tion. The selection scheme should be chosen to
balance the competing desires to exploit promis-
ing features contained in the existing population
and to explore the design space for new possibil-
ities. If selection pressure is too great, diversity
can be quickly lost, and the population will con-
verge to a sub-optimal design. If selection pressure
is too weak, the algorithm is reduced to random
search.

When selection is the only genetic operator,
the optimizer simply promotes “survival of the
fittest”. If there is no mechanism for modifying
existing designs, the best members of the initial
population will dominate in later generations, but
there will be no improvement beyond the best of
the randomly generated initial sample. Additional
operators are needed to introduce new features
while retaining important features from existing
designs. These operators do not act directly on
the design itself, but on a “genetic” string, which is
typically formed by concatenating values for a set
of parameters that describe the search space. Al-
gorithm efficiency depends directly on the recom-
bination of low-order building blocks into higher-
order assemblies, so encodings that promote the
recognition of promising building blocks should be
carefully chosen for each application [10][11]. For
the parameter identification task, binary strings
are appropriate.

Crossover operators generate new designs com-

Genetic string: | A : B . C . D |
Real Range: [0,1] : [0,100] : [-10,10] :[-10,10]
Sample string: [10010 : 10011 : 10110 : 01101]
Convert to integer: 18 13
Re-scale: 0+ (18/31)* 1 -10 +(13/31) * 20
Decoded value: 0.58 -1.61

Figure 1: Parameter identification for generalized
drag function. Decoding the genetic algorithm
string.

posed from elements of two earlier designs, thus
exploiting features already present in the popula-
tion. The position of the crossover point along the
string is chosen at random. Genetic algorithms
generally include a pointwise mutation operation,
which modifies individual bits of the string at ran-
dom, and produces corresponding changes to a de-
sign variable. This operation can introduce fea-
tures not present in either parent, so it helps to
maintain diversity in the population.

2.2 Genetic Programming

Genetic programming shares all the essential char-
acteristics of standard genetic algorithms, ex-
cept that the encoding scheme includes func-
tional information rather than simply concate-
nating parameter values. The user specifies
a set of terminals (parameters and constants)
and functions (arithmetical, mathematical, logi-
cal, domain-specific), and random combinations
are chosen to compose programs (or complex func-
tions). Typically, the encodings are of varying
length, and the associated programs are of vary-
ing complexity. Smith [12] has demonstrated that
promising building blocks are appropriately re-
tained in variable-length strings, and Koza [8] cites
the empirical evidence of successful applications
in diverse disciplines as proof that genetic adap-
tation of variable-length strings is a valid search
mechanism.

Consider the 4-parameter equation for weapon
drag (Equation 2), developed by Anderson and

McCurdy [15] (and discussed more fully later in
this paper).

(1— MO

Cp=A+ WD (2)

For a genetic algorithm, only the four parame-
ters are included in the genetic string, as shown
in Figure 1. In genetic programming, a set of
basis functions and a set of terminals must be
prescribed. For this example, a suitable basis set
might include:

Basis Functions {x,~+,-,Aexp”,In}

Terminals {Mach Number (M), Real constants
(RC)}

The genetic string encodes a tree constructed by
combining functions and terminals, as indicated
in Figure 2.The genetic string lists functions, fol-
lowed by their arguments. Arguments may be
terminals, or other functions, so that complex
equations are constructed as chains of basis func-
tions. Crossover recombines sub-chains from dif-
ferent parents, and mutation is used to replace one
subchain with a randomly generated new chain.

Figures 3 and 4 indicate that the key distinction
between genetic algorithms and genetic program-
ming lies with the encoding of the problem into a
string, which is manipulated by operators that are
common to both methods.

3 Applications in System Mod-
elling

Several researchers have used genetic algorithms
for system modelling. Hensley [13] refined the
aerodynamic model for a flight simulator, includ-
ing basic and aeroelastic effects, and demonstrated
that the genetic algorithm was insensitive to the
quality of the initial guesses for parameter val-
ues. Tan et al. [14] have used a genetic algorithm,
with an embedded simulated annealing algorithm
in place of a random mutation operator, to opti-
mize parameter values in nonlinear system mod-
els. Anderson and McCurdy [15] identified opti-
mal parameter values for a generalized drag func-
tion (which had been developed by trial and error)
to match time-space-position-information (TSPI)

Crossover Point Crossover Point

(+[RC] (*[RC] (*[M] [RC])))

(+[RC] (/(-[RC] (exp(~[M][RC]))) ("[M][RC])))
©.

(D
(2 ©,

®
Q.
v]
Offspring

Figure 2: System identification for generalized
drag function. Decoding the genetic programming
string, and example of crossover.

Population

Encoding

(=(*[M][RC]) (/(~[RC](exp("[M][RC]))) ("[M][RC])))

Selection
}_/ @
D

I 00100:01111:10110:10010 I

IlOlOl:llOOl:OlOOO:OlOOl I

\,/

o

Evaluation

Crossover

Torge Terge Joo100:01111:10 ffooo: 01001l
trajectory trajectory
Candidate Candidate' \
traject
trejectory ryecoy : [20101:11001:01 J110:10010]

Calculate trgjectory error

Figure 3: Parameter identification for a general-
ized drag function using a standard genetic algo-
rithm

Population

Selection Encoding

Now sassie@onremm]

N
N

H (+(1.22,0xp("(M,9.5))) I

W
®
\,

Crossover

Evaluation

Terget Terget I(/(M‘*(1‘55"“(2'91Il"(M‘9'5)))I
trajectory trajectory
Candidate Candidate\ K]
trajectory trgjectory (+(1.22,exp(|"(2,M))) |
Calculate trgjectory error Q

Figure 4: System identification for a generalized
drag function using genetic programming

from ballistic trajectories of weapons. Their ap-
proach, which is representative of such efforts, is
later presented in detail, and compared with the
new genetic programming approach.

Ryan [16] has searched for combinations of
control inputs that cause departure in high-
performance aircraft. The genetic algorithm ef-
fectively located departures caused by inertial cou-
pling and aerodynamic asymmetries, even for air-
craft operating at high angles of attack, where the
dynamics are particularly complex. Ryan notes
that the user is not required to guess at possible
initial flight conditions that may be prone to de-
parture, and that this technique locates departure
conditions overlooked by other prediction meth-
ods. This application uses the genetic algorithm
for flight envelop validation, but it could readily
be modified for model validation, where the algo-
rithm would search for points of maximum dis-

crepancy between model and system.

Genetic programming has been applied by
Koza [8] to the derivation of Kepler’s law of plan-
. D3 .

etary motion (7z = c¢). The algorithm pro-
duces functions expressing the period as a func-
tion of orbit diameter. The generated functions
are evolved to minimize the discrepancy between
the period predicted by the candidate equations
and the true (measured) period, for each of nine
planets. Menon et al. [17] have used genetic pro-
gramming for the generation of simple flight con-
trol laws, and suggest that it will be a useful tool
provided that the search effort required for more

complex equations is not prohibitive.

4 Parameter Settings for Ge-
netic Programming

Several genetic programming software packages
are available: [lil-gp [18] is used in this study. This
package is written in ANSI C, so execution speeds
are much higher than Lisp implementations of the
genetic programming paradigm. Source code is
freely available, and documentation is comprehen-
sive, so it is possible to modify the algorithm quite
readily.

It is well recognized that values of several input
parameters strongly influence the behaviour of ge-
netic optimizers. Here, we use a simple symbolic
regression example to tune the parameter settings
to be used in the system identification task de-
scribed in the next section. A quartic polynomial
is fitted to Anderson and McCurdy’s equation for
drag coefficient (Equation 2):

—5.0318z% + 16.642623 — 19.08522

y =
19.11702 — 1.4240 (3)

The user must select the set of basis functions
available to the genetic programming algorithm,
and the set of terminals to be used as arguments
in those functions. The following sets were used:

Basis Functions {x,+—,+,-sin,cosexp,ln}
Terminals

{ Mach Number)
Real Constants[—20, 20]

Koza derived Kepler’s Law consistently within
50 generations, using a population of 500 candi-
date functions [8]. These should be considered
as lower limits for the investigations included in
this paper, which require the development of more
complex functions.

The length of genetic strings in the initial pop-
ulation must be specified in genetic programming.
Experience with variable-length strings in param-
eter optimization [19] suggested that maximum
length strings are unlikely to be helpful in the early
stages, but strings should be long enough for ben-
eficial structures to be recognized and retained for

‘ fitness tournament
-proportionate | size=2 | size=b | size=7
0.7024 0.7299 | 0.8291 | 0.8757

Table 1: Influence of selection method on opti-
mizer performance.

future recombination. The initial population is
seeded with random structures with tree depths
betwwen 2 and 8, while a maximum depth of 17 is
permitted in later generations. There is no restric-
tion on the number of nodes, and no requirement
for different branches of each tree to have consis-
tent depth.

Fitness-proportionate selection and tournament
selection (with a range of tournament sizes) were
tested. The fitness values quoted in the following
table are averages of the best adjusted fitness for
each of 10 independent populations, because the
genetic method is probabilistic and conclusions
drawn from individual tests are unreliable. Larger
tournament sizes clearly improved optimizer per-
formance, so tournamnet selection, with a size of
seven, was chosen for subsequent tests. Note that
this contrasts with standard genetic algorithms,
where smaller tournaments are generally effective.
This may be due to a larger proportion of can-
didate solutions being non-viable in genetic pro-
gramming, so the less promising candidates should
be culled more aggressively.

Crossover rates between 0.7 and 0.9 are com-
monly quoted in the genetic optimization litera-
ture, and these values were quite appropriate for
this application. There was not a significant influ-
ence on algorithm performance for different rates
within this range. A mutation rate of 0.2 (mean-
ing 20% of new individuals had a branch replaced
by a randomly generated new branch) was also
effective.

In standard parameter estimation, only the leaf
nodes of a tree with specified structure are mod-
ified. This suggests that a new mutation opera-
tor, which concentrates on modifying constants in
the tree without modifying tree structure, might
be able to perform parameter identification within
the genetic programming structure. This new op-
erator, termed perturbation is a small step to-
wards inner loop parameter optimization, which
has been highly successful in earlier work on struc-

tural topology optimization [19]. Preliminary in-
vestigations indicated that there may be some
benefit from such an operator, but the current im-
plementation has only a small impact on algorithm
behaviour.

It is desirable that solutions produced by ge-
netic programming should have relatively small
tree size, so that they can be readily interpreted
and related to physical behaviour. Parsimony
pressure may be used to adjust the fitness of a tree
according to its size, so that large trees are penal-
ized [20]. In this application, however, increased
parsimony pressure reduced the complexity of the
best expression found by the genetic program, but
fitness also decreased. For example, a parsimony
pressure of 1.0 reduced the solution tree size, from
140 nodes with a depth of 17, to 20 nodes with a
depth of 7, but the average adjusted fitness also
decreased from 0.9283 to 0.8298. An adaptive
penalty method may be used in the future, but
for the remainder of this paper parsimony is not
considered.

5 A Generalized Drag Function
for Ballistic Weapons

We choose to investigate the drag characteristics
of a ballistic weapon, because we can directly
compare genetic programming with the genetic
method used by Anderson and McCurdy [15].
They point out that learning methods capable
of producing smooth, continuously differentiable
aerodynamic models would be particularly useful
for guidance and control applications. Success in
this relatively simple application will justify fur-
ther investigation of more complex flying vehicle
dynamics.

Anderson and McCurdy note that a generalized
drag function, relating drag coefficient to Mach
number, should capture the following basic fea-
tures:

e relatively invariant for low Mach numbers

e moderate increase at onset of compressibility
effects

e steep rise as compressibility effects dominate

e mild decrease as flow becomes fully super-
sonic

A Tar get points
—FB— Gener ated function: 0.25* M*M

cd

Mach Number

Figure 5: Objective is to minimize the error in Cd
curve.

They made several attempts to develop a suit-
able function using high order polynomials and
power series, but eventually produced their equa-
tion (Equation 2), repeated below for convenience)
only after realizing that the exponential func-
tion would provide reasonable decay when cou-
pled with a suitable power function. The insight
required to combine basis functions in this man-
ner was critical to their success in generating the
simple equation. QOur chief goal is to determine
whether similar equations can be discovered auto-
matically.

(1— MO

Cp=A+ D

The four parameters A B,C,D are each strongly
associated with a single feature listed above, and
variation of their values permits the general equa-
tion to be tailored to particular weapons.

5.1 Matching the Drag Curve
The equation developed by Anderson and Mc-

Curdy was used to generate simulated data for
drag and Mach Number for the 2000-1b Mk-84 con-
ventional bomb. We seek to generate an equation
to model the relationship, using genetic program-
ming.

5.1.1 Simulating a Genetic Algorithm

The first test contrives to limit the search power of
genetic programming, so that it can only perform
the parameter identification that is available with

Parameter | Known | Gen Gen
Value | Prog Alg
Ref [15]
A 0.12 1196 1181
B 45.0 50.9 50.1
C 0.18 .1852 1978
D -1.1 -1.091 | -0.6227

Table 2: Genetic programming successfully per-
forms parameter identification.

a standard genetic algorithm. This is achieved
by defining a single basis function, with the exact
form of the generating equation. This basis func-
tion takes four arguments, all of which are ran-
dom constants, so the terminal set also has only
one element. The range of permissible values for
each argument of the basis function are chosen to
match those used by Anderson and McCurdy in
their study.

Basis Function

(1— e=M*"*N_10,10]

{[07 1] + M[_IO’IO] }

Terminals {Real constants}

For 10 randomly generated populations, each
with 1000 individuals, the average fitness was
0.771 after 32 generations when evolution was ter-
minated because a member was found to com-
pletely satisfy the user-specified criteria for an ac-
ceptable function match. The function compares
favourably with that reported by Anderson and
McCurdy for a similar problem (see Table 2), al-
though it should be noted that an order of mag-
nitude more function evaluations were used here.
This demonstrates that the genetic programming
tool is able to match the genetic algorithm in a
problem of restricted scope. It remains to inves-
tigate genetic programming performance in the
wider search for functional form of the drag equa-
tion.

5.1.2 A Richer Basis Set

The full power of genetic programming is realised
only when more fundamental basis functions are
made available for automatic combination by the
program. FExponential and power functions are

now included in the basis set. One power function
permits Mach Number to be raised to any power in
the range [0,50], while a second function restricts
the range to lie between [0,10].

Basis Functions {x,+,+,-

Terminals { M, RC }

When this basis set was used, reasonable so-
lutions were often found, but it was possible for
some populations to prematurely converge on ex-
cessively simple functions (a quadratic, for exam-
ple). Basis functions are chosen at random from
the available list, so power functions appeared in-
frequently, and useful combinations with exponen-
tial functions were difficult to locate. The situ-
ation improved when several copies of the power
functions were included in the basis set, so that the
proportion of power functions in the initial popu-
lation increased. This is an example of the influ-
ence of basis function selection on optimizer per-
formance. Global optimality is not guaranteed by
genetic optimizers, and solution quality is strongly
dependent on problem formulation.

For a basis set with 3 copies of the M
tion, 10 independent populations with 1000 mem-
bers each were generated. All populations pro-
duced functions that were reasonably flat at the
ends, with a steep rise in the central portion. The
two best solutions are shown in Figure 6. The
dotted curve matches the target very closely for
relatively high Mach Numbers, but has slightly
high drag at low Mach Numbers, and a slight dip
as the drag curve steepens. The second solution
matches very well at the ends, but the slope of the
drag rise is slightly low.

The form of the best solution is shown in Fig-
ure 7. This equation is clearly more complex than
the target, but it has discovered the combination
of exponential and power function, which Ander-
son and McCurdy considered essential. While the
generated equations are not completely accurate,
they do contain important combinations of basis
functions. This example suggests that genetic pro-
gramming could well be useful in domains where
a suitable target function is not known a priori.
In the next example, we test whether genetic pro-
graming can produce a reasonable drag curve by
minimizing the error of a simulated trajectory.

[0.50] fyunc-

.40

3 F prr
30
cd
25

.20 =

Tar get

,,,,,,, GP solution
............... GP solution
1 1 1 1 L .

.05 r

00 1 1 1
4 .5 6 7 .8 9 1.0 1.1 1.2 1.3 1.4

Mach Number

Figure 6: Best fits from 10 runs of the genetic
program.
(exp(exp(/(exp(exp(exp M)))
(+(+ (exp(exp(exp M)))
(/(M*50 0.25766) 0.50563))
(*(exp(/(M"50 0.25766) 0.61589))
(

M~10 (M~10 0.11333))
M”50 0.52493)) xp3))))))

X
(=(=

(
Figure 7: Best function from genetic program-
ming.

5.2 Matching the Trajectory

To test the performance of the genetic algorithm
in this application, Anderson and McCurdy gen-
erated a simulated trajectory, for particular re-
lease condition (V, = 400ft/sec, V, = V, = 0.0;
x =y =0, z= 40000 ft) for a particular weapon
(20001b Mk-84 conventional bomb). Trajectories
are then generated using the drag functions associ-
ated with each set of parameters in the population,
and candidates are ranked according to the error
between their trajectory and the baseline. The op-
timizer identified parameters that produce trajec-
tories with a root mean square error (normalized
by number of evaluation points) of less than 2 feet
in a 55 second simulation. Here, the same exam-
ple (release conditions and weapon type) is used
to produce 50 target points (at 1 second intervals),
and the genetic program is to minimize the total
RMS position error between points on a simulated
trajectory and the targets (see Figure 8).

The best drag curve produced in this investiga-
tion is presented in Figure 9. It is very accurate for

Vx =400 ft/sec
Vz=0

z = 40000 ft

Error i

X = -Cd q Sref cos(0)/Mass

z=9.81 - Cd q Sref sin(6)/Mass

Figure 8: Objetive is to minimize total RMS po-
sition error.

the lower Mach Numbers, but loses some quality
in the supersonic region. This is perhaps due to
the fact that supersonic speeds are attained only
late in the flight, so that errors in this part of the
drag curve affect only a few points in the trajec-
tory. It is possible that a mosified objective func-
tion, which penalized errors later in the trajectory
more heavily, might improve performance. Per-
forming the optimization for several trajectories,
including some that are dominated by supersonic
speeds, is also likely to improve solution quality.

.40
.35 r
Cd .30 r
25 r

.20 r

»»»»»» GP solution

.05 r

Target

00 1 1 1
4 .5 6 7 .8 9 1.0 1.1 1.2 1.3

Mach Number

Figure 9: Best fit from 10 runs of the genetic pro-
gram.

Despite the error in drag curve at supersonic

RIS ermor (ff)
w
T

L 1
0. 10. 20. 30. 40. 50.
Time (s)

Figure 10: RMS error of trajectory produced by
best C'p equation.

speeds, Figure 10 indicates that the position error
is less than 4 feet for a weapon dropped from an
altitude of 40000 ft. In fact, most of the error is in
vertical position, and the error in range is less than
1 foot. Accuracy is much more strongly influenced
by the details of separation from the aircraft than
it is by the ballistic portion of the flight.

6 Conclusions and Future Work

Genetic programming can be a productive method
for system identification of flight vehicles. It can
discover equations of novel form, and it produced
a function for drag variation with Mach Number
with accuracy similar to the one developed by An-
derson and McCurdy, which took painstaking ef-
fort to derive. Genetic programming is not ap-
propriate for domains where the appropriate func-
tions are well understood, because its broad search
is inefficient.

Genetic methods do not guarantee global op-
timality. Solution quality is strongly dependent
on the choice of basis function and terminal sets.
The breadth of search should be restricted as far as
possible, so that a population of moderate size can
give a representative sample of the search space.
Genetic programming operators must be chosen
with care, with the selection operator exerting
a particularly strong influence on algorithm be-
haviour.

Solutions generated by the genetic program are
generally more complex than those produced by
humans. They are consequently more difficult to

interpret, and less likely to be physically meaning-
ful. In such situations, there is not a significant
advantage over “black-box” methods such as neu-
ral networks. Further effort is required to investi-
gate parsimony, particularly the adaptive penalty
method recommended by Blickle, which was not
investigated here. Consideration of new mutation
operators to perform inner-loop parameter opti-
mization should also improve solution quality in
future applications.

The promising performance of genetic program-
ming on the simulated flight data of a simple
weapon justifies further application to flight ve-
hicles. Investigations using real flight data from
aircraft with unusual characteristics will be con-
ducted in the future.

Acknowledgements

This work was funded in part by Air Operations
Division, AMRL, Defence Science and Technology
Organization, Australia. Their support is grate-
fully acknowledged.

References

[1] Klein, V.; Ratvasky, T.P. and Cobleigh, B.R.,
“Aerodynamic Parameters of High-Angle-of-
Attack Research Vehicle (HARV) Estimated
from Flight Data”, NASA TM-102692, Au-
gust 1990.

[2] Hamel, P.G.; Jategaonkar, R.V., “Evolu-
tion of Flight Vehicle System Identifica-
tion” ,Journal of Aircraft Vol 33, 1, pp 9-28,
Jan-Feb 1996.

[3] Maine, R.E.; Iliff, K.W., “User’s Manual
for MMLE3, a General FORTRAN Program
for Maximum Likelihood Parameter Estima-
tion”, NASA TP-1563, 1980.

[4] Klein,V.,

dynamic Parameters from Flight Data”,

“Estimation of Aircraft Aero-

Progress in Aerospace Sciences, Vol 26, pp
1-77, 1989.

[5] Gage, P.; Braun, R.; Kroo, 1., “Interplanetary
Trajectory Optimization Using a Genetic Al-
gorithm”, The Journal of Astronautical Sci-
ences, Vol 43, No 1, Jan-Mar 1995, pp 59-75.

[6]

[10]

[11]

[12]

[13]

[15]

[16]

Anderson, M.B.; Lawrence, W.R., Ger-
bert,G.A., “Using an Elitist Pareto Genetic
Algorithm for Aerodynamic Data Extrac-
tion”, ATAA 96-0514, ATAA Aerosciences
Meeting, Reno, NV, Jan 1996.

Stuckey, R.A., “Flight-estimated Spoiler
Aerodynamics of the F-111C Aircraft”, ATAA
94-3459, ATAA Atmospheric Flight Mechan-
ics Conference, Scottsdale, AZ, 1994.

Koza, J.R. Genetic Programming: On the
Programming of Computers by Means of Nat-
ural Selection, Cambridge, MA: MIT Press,
1992.

Goldberg, D., Genetic Algorithms in Search,
Optimization, and Machine Learning, Addi-
son Wesley, 1989.

Liepins, G., Vose, M., “Deceptiveness and
Genetic Algorithm Dynamics”, in Founda-
tions of Genetic Algorithms, ed. Rawlins, G.,
Morgan Kaufmann, 1991.

Holland, J., Adaptation in Natural and Arti-
ficial Systems, University of Michigan Press,
1975.

Smith, S.F. “A Learning System Based On
Genetic Adaptive Algorithms”, PhD Thesis,
University of Pittsburgh,1980.

Hensley, D.D., “Optimal Simulator Aerody-
namic Model Definition Using a Genetic Al-
gorithm”, ATAA-94-3403, ATIAA Flight Sim-
ulation Technologies Conference, Scottsdale,
A7, 1994.

Tan, K.C., Li, Y., Murray-Smith, D.J. and
Sharman, K.C., “System Identification and
Linearization Using Genetic Algorithms with
Simulated Annealing”, Proc. First Int. Conf.

on GA in Eng. Syst.: Innovations and Appl.,
Sheffield, UK, 1995.

Anderson, M.B. and McCurdy, R.E.,

“Weapon Drag Coefficient Determination

Using Genetic Algorithm”, ATAA 94-3468.

Ryan, G.W. “A Genetic Search Technique for
Identification of Aircraft Departures”, AIAA
Atmospheric Flight Mechanics Conference,
Baltimore, MD, 1995.

10

[17]

Menon, P.K.; Yousefpor, M.; Lam, T.; Stein-
berg, M.L., “Nonlinear Flight Control Sys-

tems Using Genetic Programming”, AIAA
95-3224, 1995.

Zongker, D., Punch, W. and Rand, W., “lil-gp
1.01 User’s Manual”, Free Software Founda-
tion, Inc, Cambridge, MA, 1995.

Gage, P.; Sobieski, I.; Kroo, 1., “A Variable-
Complexity Genetic Algorithm for Topolog-
ical Design” AIAA Journal, Vol 33, No 11,
Nov 1995, pp 2212-2217.

Blickle, T., “Evolving Compact Solutions in
Genetic Programming: A Case Study”, In-
ternational Conference on Evolutionary Com-
putation: Fourth International Conference on
Parallel Problem Solving from Nature (PPSN
1V), Berlin, Sept, 1996.

