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Abstract— This article investigates the design of experiments
for parameter extraction and the identifiability of model pa-
rameters of an AUV. In addition, the application of Bayesian
model selection techniques to determine the significant damping
components is studied. The damping model is structured as
a statistical linear model from which coefficients are selected
based on a maximal evidence (in the Bayes sense) for a given
set of data.

I. INTRODUCTION
Often in vehicle dynamics modelling, the prior knowledge

leads us to conjecture a particular model structure that may
capture the essential dynamics that are of importance for
the application under consideration. This then leads to two
questions:
• How do we design an optimal experiment?
• What is the best result that can be obtained from such

a experiment?
This document has a section dealing with each, following

the section describing the vehicle model. Section III deals
with the experiment design problem. If we adopt a particular
model structure, then we seek to design an experiment ut for
t = 1, . . . , N. which is in some way optimal. One way to
prescribe such a design is to consider the information yielded
by an experiment and attempt to maximise it. This can be
captured by a reduction in entropy about the parameter set
estimated by the experiment.

For the vehicle problem we can look at particular ex-
periments and use the differential entropy maximisation.
One experiment commonly used is the self-oscillating test,
which is a generalisation of the zig-zag test used in ship
manoeuvring. In his case, the optimisation is with respect
to the maximum control input magnitude and the desired
amplitude of oscillations. For simple systems, this can also
be approximated by a doublet input, based on the control
input amplitude and period.

Section IV explores the model structure selection problem.
Even if we design the optimal experiment for the model
structure that we seek to use, it may happen that given the
constraints and the model structure selected, a sub-model
could provide a better alternative. For example it is well
known that free-flying experiments may not be as informative
as captive model experiments.
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This means that we can consider a set of model of varying
complexity: M1,M2, . . . ,Mm. Where Mi ⊆ Mm. Then
what we can do is based on our optimal experiment select
the model with highest probability P (Mi|D):

P (Mi|D, I) =
P (D|Mi, I)P (Mi|I)

P (D|I)

where these can be computed using odds relative to
the model Mm, so we don’t have to compute the global
likelihood P (D|I).

This can then could be iterated with the experiment design
if the result is that the optimal model is not Mm, namely,
M? ⊂Mm.

II. VEHICLE MODEL

The longitudinal vehicle model is based on a linearised 3
degree-of-freedom open-loop model of an AUV [1]. The RE-
MUS 100 AUV model uses hydrodynamic coefficients from
[2] and subsequently [3]. For the following investigation, a
simple surge (x-axis) sub-model was considered. Following
the notation of [4], the dynamical system can be expressed
in state-space as:

u̇(t) = f(u(t), n(t)) + ωx (1)

y(t) = g(x(t)) + ωy (2)

where u is the forward velocity and n is the propellor
angular velocity.

Expanding force coefficient terms, one form of the sub-
model can be given by:

(m−Xu̇u̇ = Xuu+Xu|u|u|u|+ (1− τ)Tn|n|n|n| (3)

For the extended Kalman Filter, the Jacobian matrices are:

∇u = Xu + 2Xu|u|
√
u2 (4)

and:

∇X =

 u 0 0

u|u| 0 0

(1− τ)n|n| 0 0


T

(5)

where X =
[
Xu Xu|u| Tn|n|

]
.

Several simplifications include neutral buoyancy (W =
B), zero axial c.g. offset (xG = 0) and the omission of
propellor inflow for the thrust force.



III. EXPERIMENT DESIGN
For the purpose of system identification, an optimal ex-

periment is one that will generate the greatest amount of
information from the system of interest, thereby maximising
the confidence which can be attributed to a particular model.
Shannon [5] introduced the concept of entropy, which rep-
resents the average uncertainty in a random system and is
equivalent to its information content:

H = −Eθ[p(θ) log p(θ)] (6)

=

∫
Θ

p(θ) log p(θ)dθ (7)

Lindley [6] later used Bayes Theorem to propose the
following criterion as a measure of the amount of information
produced by an experiment:

H(p(θ), I,D) = H(D)−H(I), (8)

where H(I) and H(D) represent the entropy of the prior
and the posterior of the system respectively, parameterised
by Θ = {θ0, θ1, . . . , θN}:

H(I) =

∫
Θ

p(θ|I) log p(θ|I) dθ (9)

H(D) =

∫
Θ

p(θ|I,D) log p(θ|I,D) dθ (10)

I is the background information and D is the data resulting
from conducting an experiment. H(p(θ), I,D) therefore
captures the reduction in entropy about the parameter set
estimated by the experiment. We wish to discover a sequence
of inputs which will maximise this criteria over some vari-
able space β ∈ B thereby producing the most informative
experiment. That is:

β? = argmax
β∈B

H(p(θ), I,D) (11)

where β represents constraints on the input design, for
example power or amplitude.

For a multivariate normal distribution of θ1, θ2, ..., θn with
mean µ and covariance σ, the probability density function
is:

f(Θ) =
1

(2π)n/2|σ|1/2
e−

1
2 (θ−µ)Tσ−1(θ−µ) (12)

And the joint differential entropy is given by [7]:

H(Θ) =
1

2
E

∑
i,j

θ̃i(σ
−1)ij θ̃j

+
1

2
ln((2π)n|σ|)

=
1

2
ln((2πe)n|σ|) (13)

where θ̃ = θ − µ.
For the state-space system under consideration, this can

be written in terms of the error covariance for either prior
or posterior parameter sets, P (Θ):

H(Θ) =
1

2
ln((2πe)n|P (Θ)|) (14)

There are several techniques that could potentially be used
for estimating the posterior. The sampling approach, used

in the following section, is one method which can produce
excellent estimates. However, it is quite CPU-intensive,
typically requiring many thousands of samples to obtain
representative probability distribution histograms. If the final
entropy is to be maximised through some variable sweep
or optimisation function, this becomes onerous. A better
approach is to use a single-pass algorithm, such as a Kalman
Filter, to simultaneously predict the system response and
parameter estimates, along with their covariance estimates.

For the surge model, Square-Root form of the Unscented
Kalman Filter (SRUKF) [8] was employed. The SRUKF has
a number of advantages over the Extended Kalman Filter
(EKF). These include numerical stability and guaranteed
positive semi-definiteness of the state covariances. As the
name suggests, the SRUKF propagates the square-root of
the covariance thereby avoiding expensive recalculation at
every step. Unlike the standard UKF, which typically uses
Cholesky factorisation to generate the sigma points, the
SRUKF generates the sigma points directly and requires only
QR decomposition and an efficient update to the Cholesky
factor to update the covariance square-root.

The state vector for the system comprised vehicle state
and coefficient variables:

x =
[
u X

]
(15)

And the observation vector consisted of the state velocity
and acceleration:

y =
[
u u̇

]
(16)

Kalman Filters require initial covariance matrix estimates
for the posterior error P , process noise Q and measurement
noise R. These can be difficult to ascertain - particularly the
former two. Excessively increasing the initial estimate for
P causes the coefficient traces to jump around erratically,
resulting in worse parameter estimates with overly conserva-
tive (large) standard errors. Increasing Q artificially improves
the residual state response at the expense of the parameters,
many of which can end up diverging over the time period.
R can typically be estimated, using a high-pass filter for
example, in the case of real data. Otherwise, increasing R
by too much decreases the influence of the model thereby
impeding convergence of the coefficient estimates.

In tuning the covariance estimates initially, the following
attributes were sought:

• Close and/or improving residual state variables without
following the high frequency noise signal too closely.

• Asymptotic behaviour in each posterior error covari-
ance.

• Converging coefficient estimates, not dominated by er-
ratic behaviour.

For the surge sub-model, the process and measurement
noise covariance matrices were:

Q = diag(
[

10−6 10−7 10−7 10−10
]
)

R = diag(
[

10−2 10−2
]
)



Coeff True
Estimates

EKF UKF SRUKF INIT

Xu -1.21 -1.21 (0.37) -1.27 (0.38) -1.28 (0.38) -0.91 (100.00)
Xu|u| -2.93 -2.93 (0.18) -2.91 (0.18) -2.91 (0.18) -2.20 (100.00)
Tn|n| 6.28 6.28 (0.10) 6.28 (0.10) 6.28 (0.01) 4.71 (316.00)

TABLE I
SURGE-FORCE COEFFICIENT KALMAN FILTER ESTIMATES
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Fig. 1. EKF/UKF/SRUKF Model Response and Coefficient Estimates for
Surge Manoueuvre: Random Step Input

And the initial estimate for the posterior error covariance
was:

P = diag(
[

1 105 105 10
]
)

Prior to its use in the entropy maximisation procedure,
the SRUKF was compared with the EKF and Unscented
Kalman Filter (UKF) in terms of performance and accuracy.
Table I and the corresponding Figure 1 illustrate the results
for a sequence of random step inputs to the rotor (thrust)
control. The estimates are listed with their standard deviation
in braces and initial and true values. The initial estimates
were set to 75% of their true values, intending to reflect some
level of confidence in the model. In the figure, the system
response is shown alongside the parameter and covariance
estimates. The sample time for the simulation was 0.01s.
Gaussian measurement noise was added to each observation
variable with a standard deviation of approximately 5% of
the uncorrupted signal amplitude.

The difference in the final estimates is very small for all
three filters. The EKF produces marginally better results,
converges more rapidly and is faster due to the inclusion
of the Jacobian in the algorithm. However, the SRUKF
maintains numerical stability as described above.

To aid the estimation further, the unscented transformation
can also be constrained by clipping infeasible sigma points
back onto the boundary of the feasible region [9]. This is
only feasible with the SRUKF, since the state covariance
estimate would otherwise tend to become singular during
computation. Table II and Figure 2 illustrate the results for
the constrained filter (SRUKF-C) using the same control
input sequence over 15s. The upper and lower bounds were
set at ±50% of the value for each coefficient.

For the coefficients, convergence is slightly more rapid and
the final estimates closer using the constrained version. Most

Coeff True
Estimates

SRUKF SRUKF-C INIT

Xu -1.21 -1.27 (0.38) -1.24 (0.37) -0.91 (100.00)
Xu|u| -2.93 -2.91 (0.18) -2.93 (0.18) -2.20 (100.00)
Tn|n| 6.28 6.28 (0.10) 6.28 (0.10) 4.71 (316.00)

TABLE II
SURGE-FORCE COEFFICIENT KALMAN FILTER ESTIMATES
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Fig. 2. SRUKF/SRUKF-C Model Response and Coefficient Estimates for
Surge Manoueuvre: Random Step Input

of the clipping occurs in the first 5s or so as can be seen
in the coefficient traces. This has an adverse impact on the
system state - namely u̇ - which exhibits erratic behaviour
during the first second. For this reason, the unconstrained
SRUKF was chosen for the experiment design phase.

With a final estimate of the posterior error covariance,
P , it was possible to calculate the reduction in entropy for
a particular manoeuvre. For the surge sub-model examined,
a simple repeated doublet-type input was employed; β was
defined as a function of the thrust (propellor) control input
amplitude, nmax(RPM) and period, ∆T (s). To gain an
appreciation of the effect of both variables over some space,
a variable sweep was conducted for a 20× 20 grid spanning
the following range:

100.0 < (nmax − n0) < 200.0

1.0 < ∆T < 20.0

where the n0 represents the trim value.
Figure 3 shows a surface plot of the reduction in entropy

with thrust control input amplitude and period.
From the diagram, the increase in the entropy reduction

with increasing nmax is pronounced. The variation in entropy
with ∆T is not so clear, but appears to reach a maximum
reduction around 10s. Beyond that, there is a diminishing
increase; the doublet period would most likely be limited
by other factors anyway, such as altitude or depth. In other
words, for the repeated doublet control input the greatest
reduction in entropy, or gain of information occurs for large
amplitudes and periods greater than 10s. The ridges along
the nmax axis correspond to discrete jumps in the number
of whole doublets executed during the manoeuvre, since the
period ∆T increases while the total simulation time remains
fixed.
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Fig. 3. Entropy Reduction with Control Input Parameters
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Fig. 4. SRUKF Model Response and Coefficient Estimates for Surge
Manoueuvre

Figure 4 displays the system response, coefficient esti-
mates and covariance estimates for the repeated doublet-type
input with 10s period.

Note the long post-input time simulated to allow the
system to stabilise, minimising the discrete jumps in entropy
described above.

IV. ESTIMATION & MODEL SELECTION

Having established an optimal experiment for the max-
imisation of information, the model selection and estimation
could take place. Since, initially at least, the estimation
routine was not required to be embedded within an outer
optimisation loop, a more accurate, longer-running technique
was able to be employed. For this phase, a Markov Chain
Monte Carlo (MCMC) global search using the PyMC soft-
ware package [10] was chosen. By formulating a hierarchi-
cal stochastic model comprising prior distributions for the
model and data, the posterior distributions could be obtained
through sampling. Moreover, the previous assumption of
normally-distributed priors was not necessary.

Figure 5 depicts the stochastic surge sub-model, with
observation obs_u constructed with a ’mean’ and preci-
sion. The ’mean’ is represented by a deterministic function,
mean_u, computed with the vehicle simulation model which
is dependent on a set of stochastic coefficients Xu, Xu|u|
and Tn|n|. The precision is modelled by another deter-
ministic function prec_u and is dependent on a stochastic
standard deviation std_u.

std_u Xu Xu|u| Tn|n|

Prior coefficient PDF'sPrior std.dev PDF

prec_u mean_u

obs_u

τu

S

μu

x0

n

Fig. 5. Stochastic Surge Sub-Model Block Diagram

The circular blocks represent stochastic variables and the
rectangular blocks deterministic functions.

The precision is given by:

τu =
1

σu2
(17)

where σu is the standard deviation of the observation
(forward velocity), modelled by a Uniform distribution with
upper limit σuU

:
σu ∼ U(0, σuU

) (18)

The prior model coefficients are also modelled by Uniform
distributions with limits PuL

< Pu < PuU
:

Pu ∼ U(PuL
, PuU

) (19)

where

Pu =
[
Xu Xu|u| · · · Tn|n|

]
(20)

Finally, the observations have a Normal distribution as:

u ∼ N(µu(Pu), 1/τu) (21)

where µu(Pu) is a deterministic function with input argu-
ments Pu.



In order to approximate the posterior distributions, PyMC
provides a sampler and several step methods to choose from.
For the vehicle model investigated, the Adaptive Metropolis
step method, which is reported [11] to work more effectively
with highly correlated variables. The Adaptative Metropolis
step method works much like the Metropolis-Hastings step
method, with the exception that its variables are block-
updated using a multivariate jump distribution whose co-
variance is tuned during sampling. From initial tests on the
vehicle model, the Adaptive Metropolis step method yielded
similar results, but is vastly quicker and reported to work
more effectively on models with highly correlated variables.

Figure 6 shows the algorithm performance and output
statistics for a two-stage MCMC run. The left column plots
each of the stochastic variable (coefficient) traces over the
entire run in green, overlaid with a convergence diagnostic
over the first half. In order to alleviate scaling issues, the
coefficients were all normalised by their true values. The
first stage of 50K samples represents the ’burn-in’ period
and is discarded prior to calculation of the statistical results
under the assumption that the Markov chain does not start
near its converged state. It is possible to improve the starting
values by seeding the Monte Carlo sampler with maximum
a-posteriori estimates, however a burn-in stage is still recom-
mended to improve mixing. The second stage of 50K samples
represents the post ’burn-in’ period, used for estimation of
the posterior distributions. The convergence diagnostic is a
time series approach [12], based on scores comparing the
mean and variance of segments from the beginning and end
of a single chain:

z =
θ̄a − θ̄b√

V ar(θa) + V ar(θb)

where a is the early interval and b the late interval.
The z-scores are drawn as brown circles, overlaid on the

traces in the first column, with the right-hand vertical axes
units as standard deviations. If the chain has converged, the
majority of points should fall within 2 standard deviations
of zero, illustrated by the horizontal bands in each subplot.

The middle column plots the autocorrelation, for each of
the stochastic variables. The raw autocorrelation is filled in
light red, while the detrended version is overlaid as vertical
lines in dark red.

The right column plots the posterior histograms for each of
the stochastic variables in blue, with Normal approximations
calculated using the mean and standard deviation of the
traces drawn with dashed lines. Also shown are vertical lines
representing the true values in red, mean values (estimates)
in blue and vertical bands for the 95% Highest Probability
Density (HPD) interval in grey.

Table III summarises the results from the same run.
For the surge model, the upper limit on the standard

deviation for the forward velocity, σuU
, was set to 200% of

that for the measurement noise added following simulation,
as detailed in the previous section. For the prior distributions,
the initial estimates (mean), µu(Pu), were set to 50% of
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Fig. 6. Adaptive MCMC Run: 50K/50K samples

Coeff True
Estimates

MCMC-A INIT

Xu -1.21 -1.44 (0.08) -0.60
Xu|u| -2.93 -2.81 (0.04) -1.47
Tn|n| 6.28 6.28 (0.10) 3.14

TABLE III
SURGE-FORCE COEFFICIENT ESTIMATES

their true values and given wide bounds of ±200% of their
absolute true values, intending to reflect some less confidence
in the model.

The posterior estimates are within 3 standard deviations
of their true values and exhibit near-normal distributions.

If the correct model is known a-priori, estimation via sam-
pling is straightforward. Coefficients with a high degree of
certainty, such as those obtained empirically, can be assigned
uniform priors with relatively narrow bounds. Those with
less certainty can be assigned wider bounds or uninformative
priors. However, the model employed for analysis is often
only an approximation to the physical system. Higher order
terms may be included or omitted arbitrarily without any
real basis, at the risk of under- or over-fitting. For example,
[13] proposes a complex hydrodynamic damping model for
ships, but for many purposes, this model is impractical and
extremely difficult to estimate from recorded vehicle data. In
model selection, we seek a parsimonious model comprising
a subset of parameters which is well supported by the data.

Several criterion exist to assess parsimony within the
Bayes formulation. In the past, Bayes factors [14] determined
by Monte Carlo integration were used predominantly. More
recently, several alternatives have become popular including
the Deviance Information Criterion (DIC) and Bayesian
Predictive Information Criterion (BPIC) [15]. The Deviance
Information Criterion (DIC) is based on trade-off between
the fit of the data and the corresponding complexity of the
model.

Using the posterior mean deviance as a measure of fit:

D̄ = Eθ|y[D] (22)

The deviance is defined as:

D(θ) = −2logp(y|θ) (23)

where p(y|θ) is the likelihood.



The complexity is measured by an estimate of the effective
number of parameters:

pD = Eθ|y[D]−D(Eθ|y[θ]) (24)
= D̄ −D(θ̄) (25)

And the DIC is defined:

DIC = D(θ) + 2pD (26)
= D̄ + pD (27)

The Bayes factor is simply a ratio of marginal likelihoods
for competing models. Bayes factor may be calculated using
likelihoods that have been integrated with respect to the
unknown parameters.

BFi,j =
P (D|Mi, I)P (Mi|I)

P (D|Mj , I)P (Mj |I)
(28)

Using the same stochastic model framework developed
above, the Bayes Factor was determined by calculating
the ratio of average regularized likelihoods after sampling
from the joint prior distributions to yield the log-likelihood
for each model. Listing 1 outlines the Python code for
computing the Bayes factor for n models.

# Set all variables to random values drawn from
# joint ’prior’, meaning contributions of data
# to the joint distribution are not considered.
for m in models:
loglikes[m] = zeros(iter)
for i in xrange(iter):
m.draw_from_prior()
# Calculate log-likelihood
loglikes[m][i] = m.obs_u.logp
# Find max log-likelihood
if (loglikes[m][i] > max_ll):

max_ll = loglikes[m][i]
for m in models:
# Regularize, exponentiate and average
likes[m] = mean(exp(loglikes[m] - max_ll))
# Multiply in the priors
likepriors[m] = likes[m]*priors[m]

# Apply normalizing constant
sumlp = sum(likepriors.values())
for m in models:
bf[m] = likepriors[m]/sumlp

Listing 1. Python Bayes Factor algorithm

To test the algorithm, we add an additional term to the
simulation model, X∆u3 , where ∆u represents the change
in forward velocity from trim. The coefficient was given an
arbitrary value of 0.1 to impose a very small contribution
to the total surge force. The Bayes factor was computed for
two models: one with and one without the term, M-0 and M-
1 respectively. Table IV summarises the models and results
compiled from 100K samples.

The asterisk indicates which model was used to simulate
the observations. Model M-1 is shown to be favourable, with
the larger fraction of 0.5358, suggesting that the additional
term X∆u3 is not supported by the data.

Model BF
Coeff

Xu Xu|u| Tn|n| X∆u3

M-0* 0.4642 X X X X

M-1 0.5358 X X X

TABLE IV
BAYES FACTOR FOR SURGE-FORCE MODELS: X∆u3 = 0.1

Model BF
Coeff

Xu Xu|u| Tn|n| X∆u3

M-0* 0.5501 X X X X

M-1 0.4499 X X X

TABLE V
BAYES FACTOR FOR SURGE-FORCE MODELS: X∆u3 = 1.0

Coeff True
Estimates

Model M-0 Model M-1 INIT

Xu -1.21 -0.97 (0.37) -1.26 (0.07) -0.60
Xu|u| -2.93 -3.05 (0.19) -2.90 (0.04) -1.47
Tn|n| 6.28 6.28 (0.10) 6.28 (0.10) 3.14
X∆u3 0.10 7.78 (9.65) – 0.05

Criterion Model M-0 Model M-1

DIC -13939.8 -13940.6
BPIC -13934.6 -13935.9
pD 5.2 4.8

TABLE VI
SURGE-FORCE COEFFICIENT ESTIMATES

Increasing the magnitude of the coefficient to 1.0 results
in the following Bayes factor, shown in Table V.

In this case, favour has sided with the full model, M-0,
with a fraction of 0.5501. Clearly, the influence of additional
terms on the total surge force has a significant bearing on
their importance as held by the data.

To gain more insight into the posterior estimates, MCMC
runs were conducted for both models. Because of the uncer-
tainty in the variance of the additional term, it was given an
uninformative prior distribution. The observation data was
again generated using the full model M-0 with X∆u3 = 0.1.
Table VI and Figures 7 and 8 outline the results for 50K
samples with a 50K sample burn-in phase.

Looking at the first figure, although the posterior distri-
bution for the additional term has been well sampled - as
illustrated by the near normal density - the variance is very
large, with a standard error nearly two orders of magnitude
larger than the true value of the coefficient. In the second
figure, the posterior estimates seem unaffected by the loss of
one term. In fact, they are closer to their true values with a
lower variance as verified in the table.
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Fig. 7. Adaptive MCMC Run: 50K/50K samples, Model M-0
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Fig. 8. Adaptive MCMC Run: 50K/50K samples, Model M-1

With lower values, both DIC and BPIC criterion also
favour the reduced model, although their insensitivity to the
change (less than 1%) makes them less useful as decision
tools.

V. CONCLUSIONS

This document demonstrates a methodology for dynamic
system identification based on two stages: experiment design
to optimise the information produced and model selection for
determination of the model structure. Moreover, it is feasible
that the two stages could be repeated in an iterative manner in
order to improve the accuracy and robustness of the estimated
model. For a simple AUV surge sub-model, a sequence of
control inputs that maximised the reduction in entropy were
determined. Those same control inputs were then employed
by a model in a hierarchical Bayesian estimation, to extract
the coefficient distributions and select a parsimonious set.
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