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ABSTRACT

The primary goal of this work is to use mathematical modelling to assist in defin-
ing the operational limits of the Australian Army CH-47D Chinook when carrying
mixed density slung loads. This report presents the first phase in the program: the
development of a simple helicopter slung-load model for simulation and analysis of the
system dynamics.

General system equations of motion are obtained from the Newton-Euler equations
in terms of generalized coordinates and velocities. The system is partitioned into
coordinates such that the motion due to cable stretching is separated from that due to
rigid-body, coupled dynamics. In the formulation used, the constraint forces appear
explicitly and a solution to the resultant generalized accelerations can be determined
by modelling the cable as a simple spring. An inelastic solution is also possible by
nulling the stretching coordinates to obtain a relation for the suspension forces. The
system equations are also extended for the multiple load case.

The model is verified by imposing certain constraints in order to approximate a
simple pendulum system and then comparing its behaviour with analytical results.
Various configurations of the complete helicopter slung-load system, based on the
CH-47B Chinook carrying standard military containers, are then examined in an in-
vestigation of the open-loop characteristics. In the investigation, several parameters
such as the helicopter-load mass ratio, suspension configuration, and number of loads
are varied and the resulting system modes examined. A number of simulations are
also presented which demonstrate the characteristic behaviour of such systems.
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Mathematical Modelling of Helicopter Slung-Load Systems

EXECUTIVE SUMMARY

In the past, the operations of helicopters carrying externally slung loads has often
been limited and, in some cases, seriously hindered by stability and control problems.
Several incidences have been reported by the Australian Army alone, in which possible
aerodynamic excitation or dynamic instability, resulting in uncontrollable oscillations, has
forced premature release of the load. Hence, the main goal of the study is to develop a
comprehensive helicopter slung-load model which will provide a better understanding of
the system dynamics and various effects involved. Furthermore, there is a requirement for
the carriage of multiple loads of varying type, which has not previously been investigated
in this manner. This report presents the first phase in the program: the development of
a simple helicopter slung-load model for simulation and analysis of the system dynamics.
Following this, a full nonlinear flight dynamic model is to be developed, incorporating
additional detail, such as the automatic flight control system, rotor wake effects, load
aerodynamics, and sling elasticity.

The simulation model used for this first phase of work is based on the helicopter slung
load system first introduced at NASA Ames Research Center. In this formulation, the gen-
eral system equations of motion are obtained from the Newton-Euler equations in terms of
generalized coordinates and velocities. Using the explicit constraint method, the system is
then partitioned into coordinates such that the motion due to cable stretching is separated
from that due to rigid-body, coupled dynamics. As a consequence, the constraint forces
appear explicitly and a solution to the resultant generalized accelerations is determined by
assuming a simple spring model for the cable. It is also possible to obtain a solution to the
inelastic approximation by nulling the stretching coordinates, yielding an explicit relation
for the suspension forces. The result is computationally more efficient than the conven-
tional formulation and is readily integrated with the elastic suspension model. Another
benefit of the formulation is that it is easily applied to complex multiple body systems,
and in the current work, the system equations are extended for the case of multiple loads.
All code development has been done in the MATLAB numerical computing environment,
which provides a high-performance language amenable to modelling and simulation type
work. The main functions used in the simulation and analysis have been included in the
report.

The model is verified by imposing certain constraints in order to approximate a simple
pendulum system and then comparing its behaviour against both analytical solutions
and previously documented numerical results. A complete helicopter slung-load system,
based on a CH-47B Chinook carrying a standard military container, is then examined in
an investigation of the open loop characteristics. In this simple model, neither the load
aerodynamics nor the effect of rotor downwash on the load is taken into account. Several
parameters such as the helicopter-load mass ratio, suspension configuration, and number of
loads are varied and the resulting system modes examined. In order to extract these modes,
a linearised form of the model is first obtained by numerical approximation of the partial
derivatives. For the configurations examined, an increase in the load mass was generally
found to have a mild destabilising effect, particularly in the lateral axes. A number of
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simulations were also run in order to demonstrate the dynamic characteristics of several
different configurations. From the response data, the oscillatory modes in longitudinal
and lateral axes were identified, including the unstable phugoid and pendulum modes.
In all of the simulations examined, the cable tension was found to reach a maximum of
approximately 1.5 times the static load.
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Nomenclature

Variables

A square 6n× 6n matrix defining the kinematic relation v = Au

A1, L column partitions of A for elastic and inelastic components of the sus-
pension, respectively

AI1T , ΛT row partitions of A−1

c number of constraints imposed by the inelastic system

d number of degrees of freedom (DOF) of the system

D block-diagonal matrix of the system’s rigid-body masses and inertias

fa vector of the aerodynamic forces and moments on each body

fc vector of the cable suspension forces and moments on each body

fg vector of the gravitational forces on each body

f∗ vector of the translational and rotational inertia reaction forces on each
body

fo vector of the sum of all external forces and inertia coupling terms

FAjN , MAjj aerodynamic forces and moments on body Bj ; j = 1, 2, . . . , n

FCjN , MCjj cable suspension forces and moments on body Bj ; j = 1, 2, . . . , n

g gravitational constant

hj vector of forces and moments per unit tension on each body due to cable
Cj ; j = 1, 2, . . . , m

H matrix representing a basis of the linear vector space Λ containing fc

I, O identity and zero matrices

Kj, cj spring constant and damping coefficients for cable Cj ; j = 1, 2, . . . , m

l0j, lj unloaded and loaded lengths of cable Cj ; j = 1, 2, . . . , m

m number of cables and links in the suspension

mj, Jj mass and body-axes inertia matrices for body Bj ; j = 1, 2, . . . , n

n number of rigid bodies in the system

r, v vectors of inertial cg position and Euler angle attitudes, and the inertial
cg velocities and angular velocities of the n bodies

R, V position and velocity vectors relative to inertial space; appended num-
bers indicate specific locations or line segments joining points; the su-
perscript star denotes the cg of the body

s suspension force parameters

τj vector of cable tensions in cable Cj ; j = 1, 2, . . . , m

Ta,b transformation of physical vectors from frame Fa to Fb ; all transfor-
mations are defined from Euler angles

u generalised velocity coordinates for the unconstrained system
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u1, λ̇ generalised velocity coordinates defining the inelastic and elastic com-
ponents of the system motion, respectively

va body axes configuration velocity

Wi transformation matrix between angle rates ωii, and angular velocities
αi for body Bj

X vector of kinematic accelerations from Euler’s equations for each body

α, w rigid body Euler angle triplet and inertial angular velocity; appended
numbers indicate specific body

δ vector of control inputs for each body

ξiji moment per unit tension of cable Cj on body Bj

u, v, w x, y, and z velocity components in body axes

p, q, r roll, pitch, and yaw rates in body axes

φb, θb, ψb bank, pitch, and yaw angles for body b

δb, δa, δr, δc pitch (longitudinal stick), roll (lateral stick), yaw (pedal), and collective
control inputs

ρ atmospheric air density

X, Y, Z aerodynamic forces along each corresponding body axes

Xu, . . . , Xδ stability and control derivatives in X formulated with respect to the
variables defined above

Yu, . . . , Yδ stability and control derivatives in Y

Zu, . . . , Zδ stability and control derivatives in Z

L,M, N aerodynamic moments about each corresponding body axes

Lu, . . . , Lδ stability and control derivatives in L

Mu, . . . , Mδ stability and control derivatives in M

Nu, . . . , Nδ stability and control derivatives in N

Ixx, Iyy, Izz moments of inertia about x, y, and z axes

Ixz product of inertia in x− z plane

q̄ dynamic pressure

Operators

•, × dot and cross product operators for physical vectors

()a physical vector given by its coordinates in the frame Fa

()T transpose of ()

()∗ quantity associated with cg of a rigid body in the system

S(Va) skew-symmetric matrix representing cross-product operation for vec-
tors, V referred to Fa
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1 Introduction

The operations of helicopters carrying externally slung loads has often been limited
and, in some cases, seriously hindered by stability and control problems. Several incidences
have been reported by the Australian Army alone in which aerodynamic excitation or
dynamic instability, resulting in uncontrollable oscillations, has forced premature release
of the load.

A program was consequently initiated within the Defence Science and Technology
Organisation (DSTO) to use computer modelling and simulation to assist in defining the
operational limits of the Australian Army CH-47D Chinook when carrying slung loads.
The first phase in this program has entailed the development of a simple helicopter slung-
load model for simulation and analysis in order to provide a better understanding of the
system dynamics and various effects involved. The results from this work are presented
here. In the second phase, a more comprehensive helicopter model is to be integrated
into the multi-body system. The simulation model will incorporate additional detail, such
as the automatic flight control system, load aerodynamics, rotor wake effects, and sling
elasticity. Furthermore, there is a requirement to model the dynamics of the helicopter
with multiple slung loads of varying mass and aerodynamic properties, which has not
previously been investigated in this manner.

In this report, Section 2 presents a broad overview of prior research into helicopter
slung-load systems. The three areas of analytical studies, experimental testing and, flight
simulation are covered.

Section 3 introduces the equations of motion for a generalised helicopter slung-load
model. Both inelastic and elastic formulations are included. The overall simulation pro-
cedure is then explained in general terms. The full set of equations which constitute the
simulation model are listed in Appendix A.

In Section 4, the results obtained from the analysis of a simple pendulum-type model
are presented. These include a comparison of the characteristic system modes and longi-
tudinal and lateral simulations of two different configurations.

In Section 5, the dynamics of the helicopter slung-load model are discussed. The modes
of the linearised system are displayed over a range of mass and sling configurations and
the characteristic behaviour of a Super Stallion CH-53D cargo helicopter with MILVAN
container load are compared against previous results.

Finally, some concluding remarks are drawn and proposals for further research made.
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2 Background

There has been a small but significant amount of work done in investigating the be-
haviour and control of helicopter slung-load systems. This work can be roughly divided
into three veins: analytical studies, experimental testing, and flight simulation and au-
tomatic control. In the early years, most of this effort was concentrated in analytical
studies, including various control designs. Experimental testing in flight and wind tunnel
was mainly limited to the establishment of operational limits based on gross aerodynamic
instabilities. With the advancement of digital computing, however, came the ability to
perform dynamic, piloted simulations in real time and develop more complex models.
This increase in the complexity of the system led to a requirement for better aerodynamic
models — for both helicopter and load — and the emphasis in experimental work shifted
accordingly. These days, there is still some analytical work being conducted, particularly
in the design of automatic control systems, but much of the research is now undertaken
using simulation.

2.1 Analytical Studies

Some of the earliest studies in helicopter slung-load behaviour was carried out by
Lucassen and Sterk [1] in 1965 to provide a better understanding of the dynamics and
indicate means to avoid undesirable effects, since they were known to cause a reduction
in the helicopter’s operational capabilities. In this work, the equations of motion were
restricted to the vertical plane with three degrees of freedom (DOF), and load aerody-
namics was not included. Later, Dukes [2] used a similar approximation to examine the
modes of the system in the frequency domain and explore various feedback and open-loop
control systems for damping the pendulous helicopter-load motion. Cliff and Bailey [3]
also used a simplified model of a helicopter with a singly tethered load, which neglected
all aerodynamics other than drag. In their formulation, the nonlinear equations of motion
were linearised about a steady level flight condition, and then the resulting perturba-
tion equations were separated into longitudinal and lateral-directional sets. Although the
authors were able to make some inferences regarding the stability effects of various param-
eters, such as mass ratio and tether length, they suggested that more complete dynamical
models needed investigation. An attempt to increase the fidelity of the aerodynamic load
model was made by Feaster [4] and Feaster et al [5] using an experimentally determined
yaw-damping coefficient in a linearised small perturbation stability analysis, which con-
sidered both single-cable and two-cable tandem suspension systems. The results agreed
well with the previous model and full-scale tests and also demonstrated that the two-cable
tandem suspension system offered a satisfactory means of transporting the standard cargo
container examined. Around the same time, Prabhakar and Sheldon [6] and Prabhakar
[7] undertook a theoretical study of a Westland Sea King helicopter carrying a standard
cargo container on a two point longitudinal suspension. Again, the aerodynamic stability
derivatives used in the model were determined through experiment and it was found that
the pitch and yaw rate derivatives were strongly destabilising.

Over the following several years, Nagabhushan [8, 9] and Nagabhushan and Cliff [10]
produced several reports on the dynamics, stability, and control of helicopters carrying
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externally suspended loads. Several mathematical models of varying order were developed
to describe the dynamics of such systems. However, unlike much of the previous analytical
work, which was based on the Newton-Euler equations, the nonlinear formulation was
derived from Lagrange’s equations for general dynamical systems. In these reports, the
low-speed stability characteristics of a conventional helicopter with an external sling load
on a single-point suspension were investigated. Typically, towing cable length, towed
body-to-vehicle mass ratio, and load factor in a turn were found to affect the stability of
the aircraft and its sling load.

In 1986, Ronen [11] and Ronen et al [12] developed a new model for a helicopter
carrying a sling load on a single point suspension in order to improve on the existing
dynamic models and investigate the open loop characteristics of the system. For the first
time, the model took into account the effects of rotor downwash on the load and the
unsteady aerodynamics of bluff-body type loads. The nonlinear equations of motion were
derived and then separated into two sets: the nonlinear trim equations and the linearised
equations for small perturbation about the equilibrium. More recently, Curtiss [13] derived
a full set of equations for the twin lift system, linearised about a hover trim condition.

2.2 Experimental Testing

Although there has been a substantial amount of experimental work in determining
the aerodynamic behaviour of various slung loads using wind-tunnels, little has been done
through full scale flight-testing. In 1968, Gabel and Wilson [14] presented the results of
an extensive program of simulation, wind-tunnel, and flight tests, which were conducted
to assist in solving the problems of sling load vertical bounce, sling-leg web flapping, and
aerodynamic yaw instability. Some years later, Hone [15] utilised the data from actual
flight tests on a Sikorsky CH-54 heavy-lift helicopter to investigate the validity of a model
developed by Briczinski and Karas [16]. The aim of this work was to explore phenomena
associated with the carriage of externally suspended loads on helicopters, and to establish
more reliable strength requirement data for the load slings and their interfaces.

Other work in experimental testing includes those presented by Kesler et al [17], Feaster
[4], Feaster et al [5], and Matheson [18].

2.3 Flight Simulation and Control

One of the first investigations into automatic control for helicopters with slung loads
was conducted by Wolkovitch and Johnston [19] in 1965. The single-cable dynamic model
was developed in a straightforward application of the Lagrange equations. Abzug [20]
later expanded on this model to consider the case of two tandem cables. However, his
formulation was based on the Newton-Euler equations of motion for small perturbations,
separated into longitudinal and lateral sets. Aerodynamic forces on the cables and the
load were neglected, as were the rotor dynamic modes.

In recognition of suspension-related problems encountered with the carriage of external
cargo by helicopters, the US Army in 1970 initiated a program aimed at the establishment
of design criteria for sling members and hard-points. This program, as well as many

3
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subsequent investigations, were undertaken by the Eustace Directorate, US Army Air
Mobility Research and Development Laboratory (USAAMRDL). Part of the first phase in
the contract, reported by Briczinski and Karas [16], involved the computerised simulation
of a helicopter and external load in real time with a pilot in the loop. Load aerodynamics
were incorporated into the model, as well as rotor-downwash effects in hover. Soon after
this program, Liu [21] conducted an extensive study to select the best technical approaches
for stabilising a wide spectrum of externally slung helicopter loads at forward speeds.
The simulation model used extended that of Abzug [20] to include load aerodynamics.
Several stabilisation systems were evaluated using a moving-base simulator and of those,
an electronic system providing rate and acceleration inputs to the helicopter’s stability
augmentation system (SAS) was favoured. The design and assessment of automatic control
systems continued with Asseo and Whitbeck [22] in their paper on the control requirements
for sling-load stabilisation. Linearised equations of motion of the helicopter, winch, cable,
and load complex were developed for a variable suspension geometry and were then used
in conjunction with modern control theory to design several control systems for each type
of suspension. The next year, Gera and Farmer [23] examined the feasibility of stabilising
external loads by means of controllable fins attached to the cargo. In their simple linear
model representing the yawing and the pendulous oscillations of the slung-load system, it
was assumed that the helicopter motion was unaffected by the load.

Following the first program of work sponsored by the Eustace Directorate, a further
study to define important flight control system design and handling qualities criteria for
moving loads slung beneath tandem-rotor helicopters was conducted by Kesler et al [17].
It included theoretical analyses, acquisition, and evaluation of both wind tunnel and flight
test data, analysis of various problems, and the actual flight simulation of a Model-347
advanced tandem-rotor helicopter with an external load. Another program under the same
sponsorship, investigated by Alansky et al [24], looked into the quantitative limitations
of the CH-47 helicopter performing terrain flying with external loads. The simulation
used in this investigation comprised a fully coupled total force and moment model and
an alternative method of load-control named the Active Arm External Load Stabilisation
System (AAELSS).

Some time later, a generalised real time, piloted, visual simulation of a single rotor
helicopter, suspension system, and external load was developed by Shaughnessy et al [25],
and subsequently validated for the full flight envelope of a CH-54 helicopter and cargo
container. The mathematical model described used modified nonlinear classical rotor
theory for both the main rotor and tail rotor, nonlinear fuselage aerodynamics, an elastic
suspension system, nonlinear load aerodynamics, and a load-ground contact model.

In 1980, Sampath [26] completed his PhD dissertation on the dynamics of a tandem-
rotor helicopter slung-load system, which involved modelling and simulation as well as
experimental wind-tunnel tasks. In his formulation, Lagrange’s equations were used to
write the equations of motion and were divided into two sets: one for the towing vehicle
and the other for the slung load. The cables of the sling were modelled as massless linear
springs with viscous damping and no aerodynamic properties. The aerodynamic models
for the helicopter and load were both implemented using tabulated static data. Some
years later, a full nonlinear simulation model of the CH-47B helicopter, developed by the
Boeing Vertol Company, was adapted for use in the NASA Ames Research Center (ARC)
simulation facility by Weber et al [27]. The mathematical model developed was based

4
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on a total force approach in six rigid-body DOF along with the option for an externally
suspended load in three DOF. The aerodynamic models were also quite comprehensive,
including steady-state rotor flapping and load aerodynamic effects.

More recently, research into the automatic control of load dynamics has continued
with Raz et al [28] in an investigation of an active aerodynamic Load Stabilisation System
(LSS) for a helicopter sling-load system. The general theoretical model used was based on
previous work [11] for configurations with a single suspension point.

Some of the most recent work in the simulation of helicopter slung-load systems has
been conducted by Cicolani and Kanning [29, 30] and Cicolani et al [31] at the NASA
ARC. In this work, the general simulation equations were derived for the motion of slung-
load systems consisting of several rigid bodies connected by straight-line cables or links,
assumed to be either elastic or inelastic. A formulation for the general system was obtained
from the Newton-Euler rigid-body equations with the introduction of generalised velocity
coordinates. The same approach for simulating helicopter slung-load dynamics has been
adopted in the current work at AMRL. In addition, the equations of motion have been
extended to the case of multiple loads with disparate mass and aerodynamic characteristics
and sling configurations.

2.4 Surveys and Overviews

In his book on the dynamics of helicopter flight, Saunders [32] devoted one section
to piloting problems associated with the carriage of external loads. The normal trim
state and origins of load oscillation were first examined using a simple helicopter-load
mass model. Various problems, including uncontrollable load oscillations, aerodynamic
excitation, active control, and poor visibility were then discussed in a broad context.

In 1976, Matheson [18] compiled a review of the developments and data concerning
the operation of helicopters with slung loads. The report focused on the problems of
aerodynamic instability, vertical bounce, and sling-leg flapping. Methods for reducing
these instabilities and procedures for extending the operating limits of a helicopter with
different types of slung loads were also discussed.

Around the same time, Shaughnessy and Pardue [33] conducted a survey of the heli-
copter sling load accident/incident records provided by various US organisations for the
period from 1968 to 1974. From the data, the highest percentage of accidents occurred
during hover, and it was therefore concluded that hovering was the most critical sling
load flight operation. Furthermore, the accidents and incidents caused by swinging loads
during cruise were generally much less severe than the hover mishaps.
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3 System Representation

3.1 Description of System

Helicopter slung-load systems fall into a class of multibody dynamic systems consisting
of two or more rigid bodies connected by massless links. The links can be considered either
elastic or inelastic, although the rigid-body assumption excludes any helicopter or load
elastic modes. Typically, the system is characterised by the configuration geometry, mass,
inertia, and aerodynamic behaviour of both helicopter and load, as well as the elastic
properties of the links.

In general terms, the system of interest consists of a single helicopter supporting one or
more loads by means of some suspension. Several examples of the various configurations
under consideration are illustrated in Figure 1. The model is comprised of n rigid bodies,
B1,B2,...,Bn, with m straight-line links supporting a single force in the direction of the
link. For cables, this is strictly a tensile force — cable collapse is not considered. If the
links are modelled as inelastic, c (≤ m) holonomic constraints1 are imposed on the motion
of the bodies and the system has d = 6n − c DOF. If the links are modelled as elastic,
there are 6n DOF.

In the model used, a number of simplifying assumptions were made. These included
the exclusion of cable aerodynamics and rotor-downwash effects. Furthermore, load aero-
dynamics have been neglected for this initial stage of the work. Despite these limitations,
the system defined above has proven adequate for simulation studies [31] in which the
low-frequency behaviour is of primary interest.

3.2 Generalized Equations of Motion

The simulation model used for this first stage of work was based on the helicopter
slung-load system introduced by Cicolani and Kanning [29]. In this formulation, the
general system equations of motion are obtained from the Newton-Euler equations in
terms of generalised coordinates and velocities. Following the explicit constraint method,
which utilises d’Alembert’s principle, the system is partitioned into coordinates such that
the motion due to cable stretching is separated from that due to rigid-body, coupled
dynamics. As a consequence, the constraint forces appear explicitly and a solution to the
resultant generalised accelerations is determined by assuming a simple spring model for
the cable.

It is also possible to obtain a solution to the inelastic approximation by nulling the
stretching coordinates to obtain an explicit relation for the suspension forces. The result
is computationally more efficient than conventional procedures and is readily integrated
with the formulation for elastic suspension. Another benefit of the formulation is that
it is easily applied to complex, multiple body systems, as in the current work. To date,
all code development has been done in the MATLAB numerical computing environment,

1Holonomic constraints represent excess coordinates which are independent and can be eliminated
through equations of constraint.
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which provides a high-performance language, amenable to modelling and simulation type
work.

Figure 1: Single Point Slung-Load Configurations

The Newton-Euler equations of motion for a system of n rigid bodies can be expressed
in six DOF as

mi gN + FAiN +
MAii +

FCiN −
MCii −

mi V̇ i∗N
Ji ω̇ii − S(ωii) Ji ωii

= 0
= 0

; i = 1, 2, . . . n (1)

In this expression, the first set of equations represents the balance of translational
forces, where the subscript N denotes the inertial axes. The second set represents the sum
of moments about each body’s cg, where the subscript i denotes the corresponding body
axes. Both equations are comprised of several terms including the forces and moments due
to gravity, aerodynamics, and inertia. The first term, mi gN , is the gravity force acting
through each cg, FAiN and MAii are the aerodynamic forces and moments respectively,
and FCiN and MCii the cable forces and moments respectively. The terms mi V̇ i∗N and
Ji ω̇ii constitute the inertial reaction of each body, and S(ωii) Ji ωii is the moment induced
by the Coriolis effect.

It is convenient to write these equations as a single expression in matrix form. Denoting
the configuration position vector as r and the configuration velocity as v for the system,

r =




R1∗N
...

Rn∗N
α1
...

αn




v =




V 1∗N
...

V n∗N
ω11
...

ωnn




(2)

where the rigid-body cg positions Ri∗N =
[

xi yi zi

]T and Euler angles αi =
[

φi θi ϕi

]T .

The corresponding velocities V i∗N = Ṙi∗N =
[

ẋi ẏi żi

]T and the angular rates ωii =[
pi qi ri

]T are related to the Euler angle rates via the transformation

ωii = Wii α̇i (3)

where

Wii =




1 0 − sin θi

0 cos φi sinφi cos θi

0 − sinφi cosφi cos θi


 (4)
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Using fg, fa, fc, and f∗, for the combined force-moment vectors due to gravity,
aerodynamics, cable suspension, and inertia plus Coriolis effects, the equations of motion
can be written

fg + fa + fc + f∗ = 0 (5)

where

fg =




m1 gN
...

mngN

0
...
0




fa =




FA1N
...

FAnN

MA11
...

MAnn




fc =




FC1N
...

FCnN

MC11
...

MCnn




(6)

and
f∗ = −Dv̇ −X (7)

where

D =




m1
. . . 0

mn
J1

0
. . .

Jn




X =




0
...
0

S(ω11) J1ω11
...

S(ωnn) Jn ωnn




(8)

Here, D is a block-diagonal matrix comprising masses and inertias along the main
diagonal, v̇ is the configuration acceleration and the matrix X contains the Coriolis terms
due to the use of rotational coordinates in body-axes

In order to derive a set of simulation equations for the system, a solution to the equa-
tions of motion described above must be found; that is, an expression for the configuration
acceleration in terms of the system states and applied forces. For the helicopter slung-load
system under consideration, it is useful to first formulate a set of generalized coordinates
and velocities which describe the motion of the inelastic system and the effect of cable
stretching as two distinct subsets. An inelastic system with n bodies and c constraints will
have d = 6n − c DOF. The cable constraints on the helicopter slung-load system can be
considered holonomic. In addition, for the following system, the constraints will be posed
as time invariant. The special cases of cable winching and attachment-point movement
are not considered.

The system can be partitioned according to the 6n generalized position coordinates as
follows:

q =
[

q1
λ

]
(9)

where q1 is the list of d position coordinates for a system with inelastic suspension and
λ are the c coordinates which describe the variation in cable length due to stretching.
The configuration velocity can be expressed as a linear function of the generalized velocity
coordinates

v = Au (10)

8



DSTO–TR–1257

where

u =
[

u1
λ̇

]
A =

[
A1
L

]
(11)

Differentiating Equation (10) and substituting v̇ into Equation (7) yields

f∗ = −DȦu−DAu̇−X (12)

Now, replacing f∗ in Equation (5), the following simplified version of the equations of
motion can be written:

fo + fc−DAu̇ = 0 (13)

where the vector fo is the sum of all external forces and inertial coupling terms, i.e.

fo = fg + fa−DȦu−X (14)

Since the system has been specified in terms of its generalized coordinates, A is a square
6n × 6n nonsingular matrix and a solution for the generalized acceleration coordinates
exists. From Equation (13), the acceleration equation is

u̇ = A−1D−1[fo + fc] (15)

It should be noted here that the inverse matrix A−1 simply represents the relation
u(v) that can be derived analytically from the kinematics. Therefore, it is unnecessary
to perform a costly numerical inversion to obtain u̇. In partitioned form, the acceleration
equation is [

u̇1
λ̈

]
=

[
AI1T

ΛT

]
D−1[fo + fc] (16)

where AI1T and ΛT are the 6n − c and c rows of A−1 which define the relations u̇1 and
λ̈ respectively. From the first set of equations representing the inelastic component, the
solution for u̇1 is

u̇1 = AI1T D−1[fo + fc] (17)

The second set of equations represents the elastic component

λ̈ = ΛT D−1[fo + fc] (18)

An alternate formulation for the accelerations u̇1 can be obtained by first differentiating
the expanded form of the configuration velocity from Equation (10) as follows:

v = A1u1 + Lλ̇ (19)

and then substituting into Equation (7) to give

f∗ = −DȦ1u1−DA1u̇1−D(Lλ̈ + L̇λ̇)−X (20)

If fo is redefined:
fo = fg + fa−DȦ1u1−X (21)

9
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then replacing f∗ in Equation (5) and solving for u̇1 produces

u̇1 = [A1T DA1]−1A1T [fo−D(Lλ̈ + L̇λ̇) + fc] (22)

The last step required in determining a solution for the generalized accelerations is to
calculate the constraint force fc. For a system with c constraints, the constraint force can
be expressed as

fc = Hs (23)

where the columns of the matrix H are configuration vectors and rank H = c. The
elements of the vector s are arbitrary scalars to be determined. The exact form of this
equation and its solution depend on whether the cables are considered elastic or not.

Elastic System

For a general elastic system with M cable-body attachments, the suspension forces on
each body can be given as the sum of forces and moments applied at each attachment
point on that body, i.e.

fc =
M∑

j=1

hj τj (24)

In this formulation, the configuration vector hj defines the force and cg moment due to
a unit load at the jth cable attachment, and τj is the cable tension. Referring to Figure 2,
kcj and (Ri∗j×kcj) denote the constraint force and moment per unit tension respectively,
on body Bi(j) due to the jth cable attachment. The vector kcj is the cable direction
outward from the body, and Ri∗j = (Rj − Ri∗) is the moment-arm of the attachment
point about the cg.

Ri*j

kcj

Bi

Cj

i*

j

Figure 2: Suspension Forces on a Rigid Body

The tension in each cable is given by a simple spring model as

τj = max{0, Kj(`j − `oj}+ cj ˙̀j} ; j = 1, 2, . . . , M (25)

where `oj and `j are the unloaded and instantaneous cable lengths, and Kj and Cj are
the cable spring and damping constants.

10
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Inelastic System

It can be shown that the columns of H and Λ both form bases of the same linear vector
space and therefore Λ can be used to define the constraint force, i.e.

fc = Λs (26)

where the vector s will have units of force if the coordinates λ are lengths. To find a
solution for the inelastic system, the constraint acceleration is set to zero, i.e. λ̈ = 0.
Substituting into Equation (18) gives

0 = ΛT D−1[fo + Λs] (27)

the solution to which is
s = −[ΛT D−1Λ]−1ΛT D−1fo (28)

3.3 Simulation of Helicopter Slung Load System

Prior to executing the simulation, several components must be customised to the
helicopter slung-load configuration of interest.

The first step in setting up the simulation equations involves determining the con-
straints of the inelastic system and then defining the generalised velocity coordinates (u1,
λ̇). Using these coordinates in kinematic relations for the system, it is then possible to
obtain expressions for the system matrices A, A−1, and Ȧ. The selection of appropriate
coordinates is case specific; however, it is possible to choose them so that they consist
largely of natural vectors. In most applications, including that discussed in this report,
u is comprised of the cg velocity of a reference body (typically the helicopter), the cable
velocities, and the angular velocities of all bodies including both helicopter and loads.

Next, an appropriate representation for the suspension cables must be chosen. For
inelastic cables, fc is calculated from any basis of the constraint force space Λ and the
corresponding constraint force parameters s as in Equation (28).

For the last step, the aerodynamic and inertial properties of both the helicopter and
loads need to be implemented in the model. For most rigid bodies, the aerodynamic
forces and moments are a function of the configuration velocities and displacements v
and r, and the control inputs δ. Typically, the helicopter aerodynamic model neglects
position-dependent and acceleration-dependent effects such as interbody-ground interfer-
ence and unsteady aerodynamics. However, these are often secondary in nature and the
resulting model is adequate for simulation under most conditions. Aerodynamic models
for loads, which are generally unsteady and of much higher order, are less well understood
or replicated.

Once the system has been configured, the dynamic simulation can proceed. First, the
initial state (u, r) and the trim state (u0, r0) must be set. Then the integration loop is
started and the following steps are executed in sequence, according to the flow-diagram of
Figure 3:
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Figure 3: Simulation Flow Diagram
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1. Determine the aerodynamic force fa, inertia, and Coriolis forces f∗, and gravity
force fg, all in inertial axes. Assuming the aerodynamic model is written in body
axes, an angular transformation will be required for fa. The configuration velocity
v can be calculated from the generalised velocity u using the kinematic matrix A.

2. Sum the external forces fa, f∗, and fg to yield the configuration force fo.

3. Using the configuration force along with matrices derived from the current state
(u, r) and the configuration geometry, solve the cable force fc for either elastic or
inelastic suspension models.

4. Compute the generalised accelerations u̇ from the inverse kinematic matrix A−1, and
the inverse mass matrix D−1.

5. Compute the velocity ṙ from the configuration velocity and inverse transformation
matrix W−1.

6. Apply an integration step to predict the new state (u, r) and repeat the sequence.

At this early stage, all code development has been done in the MATLAB [34] numerical
computing environment, which provides a high-performance language amenable to mod-
elling and simulation work. It is important to stress that this pilot simulation was not
intended to run in real time, but rather produce the appropriate output for subsequent re-
play and analysis. At a later stage, the code will be ported to a platform-specific compiled
language suitable for piloted, real time simulation.

The Helicopter Slung-Load Simulation (HSLSIM) program, consists of several modules.
These including the main script, integration function, differential equation solution, aero-
dynamic model, and various output and replay functions. The simulation is run through
the main script, which generates the control inputs, configures the helicopter-load system
properties (geometric and inertial), sets the initial system state, and then executes the
integration function. The integration function ODE45 is problem independent and based
on an algorithm which combines 4th and 5th order Runge-Kutta formulas for ordinary dif-
ferential equations. It requires a function tailored to the problem at hand, which provides
a point solution to the differential equation. For the helicopter slung-load simulation, this
function represents the core of the code and implements much of the above flow diagram.
The aerodynamic models for both helicopter and loads are called from within this func-
tion. They can be as simple or as complex as desired, but must output total force and
moment variables. Hence, if small-perturbation aerodynamic models are to be used, they
must be augmented with the corresponding trim forces and moments. The cable elastic
model can also be implemented as a separate function, although this was not done, since
the spring-damper model is fairly standard and easily included in the solution function.
Following summation of the external forces and solution of the internal (cable) forces, the
solution function computes the generalised accelerations and velocities (u̇, ṙ) at the current
state. This point solution is passed to the integration function and the simulation loop
continues.

It is also possible to calculate a linear model by numerical approximation of the Jaco-
bians 5uu̇ and 5δu̇ from the nonlinear system.

13
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This model will have the form

u̇ = [5uu̇]u + [5δu̇]δ (29)

and can be used for an alternative linear simulation about the trim state. Another use is
in various linear system analyses, such as the determination of the natural modes, which
will be discussed in the following section.

14
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4 Simple Pendulum System Dynamics

The first phase of the analysis involved an investigation of the dynamics of pendulum-
type systems. For this purpose, the full helicopter slung-load simulation model developed
in Section 3 was constrained so as to approximate a two-body pendulum system. Fur-
thermore, the aerodynamic effects of both helicopter and load were excluded from the
model.

4.1 System Properties

The simulation was validated for both free and constrained models using the system
given in Reference [11] for a CH-53D helicopter with a single slung load. The CH-53D is
a twin-turbine, main and tail rotor transport helicopter with mass and inertia properties
as outlined below.

Mass (lb) Moments of Inertia (slug.ft2)
mh Ixx Iyy Izz Ixz

35000 36100 191500 179200 14800

The slung load chosen was a standard military container, known as a MILVAN, which
is a common helicopter cargo used in many commercial and military operations. The
dimensions of a MILVAN container are 20× 20× 8 ft and the mass typically varies from
4000 lb (empty) to 20000 lb (full). In the Reference cited above, examples with masses
outside this range were also checked to demonstrate very low density and very heavy loads.
The moments of inertia for the container load were approximated with linear functions of
its mass by

Ixx = 0.33 ∗ml Iyy = Izz = 1.20 ∗ml (30)

where the moments of inertia are in slug.ft2 and the mass is in lb.

4.2 Analysis of System Modes

In order to validate the simulation developed, comparisons were made against those
previously reported in a numerical example given in Reference [11]. In addition, analyt-
ical results were calculated for the modes of similar pendulum systems. The governing
equations for these systems are detailed in Appendix B, along with several simplifying
approximations and solutions to each in terms of their natural frequencies.

For the example cited, the mass ratio is ml/mh = 0.05. Using Equation (30), this
yields the following load properties,

Mass (lb) Moments of Inertia (slug.ft2)
ml Ixx Iyy Izz Ixz

1750 577.5 2100 2100 0

The sling configuration used consisted of a single pendant suspension and bridle, as
illustrated in Figure 4. The total sling length L between helicopter attachment point and
the load cg is 25 ft, and the pendant-to-sling length ratio `/L is 0.6.
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�

L

Figure 4: Two-body Pendulum Simulation System

For the system examined, there are two oscillatory modes in both longitudinal and
lateral axes. Essentially, the low frequency mode is associated with the pendulous motion
of the load along the total sling length. The higher frequency mode is associated with the
coupled pitching (or rolling) motion of the load and bridle and the pendant suspension.
Values for the natural frequencies obtained from the analytical formulation and the sim-
ulation are listed in Table 1. The first column of analytical results was calculated from
Equation (B16). The second and third columns pertain to the models generated by the
simulation code HSLSIM developed in the current study. Of these, one was constrained
so as to approximate the pendulum system used in the analytical derivation, which for
the longitudinal case included constraints in translation along both y and z axes, and
constraint in rotation about the y axis. The other model was free to move in all axes, pro-
viding a closer approximation to the real system. The fourth column lists the frequencies
obtained in the previous analysis using the simulation code EOMPROG.

Table 1: Pendulum Mode Frequencies (rad/s) for CH-47B-MILVAN System in Hover
Mode Analytical HSLSIM HSLSIM EOMPROG

(Eq. (B16)) Constrained Free (Ref. [11])

Longitudinal (mode I) 1.12 1.12 1.15 1.14
Longitudinal (mode II) 3.86 3.86 3.86 3.84
Lateral-roll (mode I) 1.15 1.16 1.25 1.24
Lateral-roll (mode II) 7.17 7.17 7.18 7.14

Agreement between the analytical results and the constrained model is very good.
However, there are some small discrepancies between those first two sets and the last
two sets — the unconstrained models. This can be explained by an additional coupling
effect in the unconstrained models, as the sling force at the attachment point produces
a moment about the helicopter cg. The effect is more prominent in the lateral case,
since the helicopter moment of inertia is relatively low in that axis. Differences between
the unconstrained model generated in HSLSIM and EOMPROG are understandable, as
they were generated by two quite different approaches. The simulation code HSLSIM
incorporates a full nonlinear representation of the helicopter slung-load system, which was
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linearised numerically about the trim state to obtain a Jacobian matrix for model analysis
(see the following section). Using this Jacobian matrix approach would therefore incur
errors from the numerical approximation. EOMPROG, on the other hand, is based on
an explicitly linear small-perturbation formulation and, consequently, errors would arise
from such simplification as the small angle assumptions and the exclusion of higher order
terms.

It is also interesting to see how the analytical solution compares with the unconstrained
simulation model HSLSIM for a range of configurations. Figures 5 and 6 show the variation
in natural frequency for the longitudinal pendulum modes with load-to-helicopter mass
ratio ml/mh and pendant-to-sling length ratio `/L, respectively. Clearly, there is quite
a large difference in the higher frequency mode over the range of `/L with a smaller
deviation in the lower frequency mode. The analytical approximation is most accurate
at a length ratio of 0.6, but outside this differs dramatically. At a length ratio of 0.1,
the error is close to 50% of the frequency predicted by HSLSIM. At a length ratio of 0.9,
the error is approximately 120%. There is less difference in the modes over the range
of ml/mh. For the configurations examined, the largest error of 20% occurred in the
lower frequency mode at a mass ratio of 1.0. This error improved as the mass ratio was
decreased, reaching a level of 5% at a ratio of 0.1. Both of these discrepancies are due
to the simplification of the analytical model, which prohibits any pitching motion about
the helicopter cg. Therefore, as a result of this test, one can conclude that the analytical
approximation given in Appendix B is only appropriate for low load-to-helicopter mass
ratios and moderate pendant-to-sling length ratios (0.6 for the system examined).

4.3 Longitudinal and Lateral Simulations

Following linear analysis of the modes, several simulations were run so as to gain a
better picture of the inherent dynamic behaviour of the slung-load system. Simulations of
both longitudinal and lateral subsystems were conducted. From the longitudinal simula-
tions, two cases have been selected for inclusion here to illustrate the effect of heavy loads
on the helicopter response. From the lateral simulations, two cases are included, which
demonstrate the instability in yaw for a multiple-load system.

For the longitudinal simulations, the helicopter-load configuration was the same as that
used in the linear analysis, i.e. a CH-53D helicopter and MILVAN load attached by a single
pendant suspension. It was also constrained in the lateral-directional axes, as before. The
slung load was initially offset from its static equilibrium position at hover, with the sling
cable set at -30◦ in pitch and the load at -15◦. It was then allowed free response over the
10 s duration. The time history response plots for two different load configurations, with
mass ratios of 0.05 and 1.0, are presented in Figures 7 and 8, respectively. In the first
set of plots, it can be seen that the load, with a small mass compared to the helicopter,
has very little effect on the helicopter motion, as expected. Both low and high pendulum
natural frequencies (0.18 and 0.61 Hz) of the load can be readily identified in the traces
of forward velocity and pitch rate, respectively. The normal acceleration and cable force
oscillate at approximately twice the high pendulum natural frequency and are highly
correlated, with peaks at the pitch rate extremes (0.36 Hz). For the cable force, these
peaks have magnitudes which are roughly 1.5 times the static load. The longitudinal
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Figure 5: CH-53D-MILVAN System Longitudinal Pendulum Modes – Variation in Fre-
quency with Load-to-Helicopter Mass Ratio
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acceleration is also highly correlated with the cable angle. In the second set of plots, it is
clear that the load, now with mass equal to the helicopter, has had a significant effect on
the helicopter motion. The pendulum natural frequencies are also less well defined (0.30
and 0.64 Hz). Unlike the first simulation, in this case the helicopter reaches velocities of
similar magnitude, as the load and the accelerations in forward and normal directions are
out of phase by 180◦. Once again, the cable force oscillates at approximately twice the
high pendulum natural frequency, with peaks near the pitch rate maxima (0.33 Hz).

For the lateral simulations, a CH-47B helicopter and two box containers attached by
multiple (bridle) cables were used. The helicopter was constrained in the longitudinal and
lateral axes, which restricted it to a yawing/side motion. The forward-attached slung load
was initially offset by a bank angle of -30◦ so as to be displaced to the starboard side of
the helicopter, and the aft-attached slung load was offset by an angle of 30◦, resulting in
a displacement to the port side. Once again the system was allowed free response over
10 s. The time history response plots are presented in Figures 9 and 10, for configurations
with total mass ratios of 0.05 and 1.0. From these plots, the symmetric nature of one
of the pendulum modes can be seen. Specifically, the velocity component v, bank angle
φ, pitch angle θ, and acceleration component v̇ for each load is ‘mirrored’ by the other.
Slight deviations have come about because of the different attachment point locations with
respect to the helicopter cg. It is also important to note that there is a very low frequency
response in yaw for both helicopter and load, which manifests itself through the yaw rate
r and azimuth angle ψ. Although these two traces seem to be diverging, they are actually
just at the start of a long period (< 0.01 Hz) oscillation. This oscillation has an amplitude
of approximately 160◦ in the helicopter azimuth angle. The effect of the loads swinging in
this manner therefore has a significant influence on the yaw of the helicopter.
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Figure 7: CH-53D-MILVAN System Time History Response — Mass Ratio 0.05
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5 Helicopter Slung-Load Dynamics

The second phase of the analysis examined the dynamics of the full helicopter slung-
load simulation model. Both the CH-53D and the CH-47B helicopters with various slung-
load configurations were considered. These models were free in all axes and incorporated
basic helicopter aerodynamics.

The CH-53D helicopter model was essentially the same as used in the previous section,
but with the inclusion of aerodynamic effects. Furthermore, the same MILVAN slung
load was used in all of the single-load configurations examined. The main focus of the
analysis, however, was various configurations of the CH-47B helicopter with slung loads.
The CH-47B is a twin-turbine, tandem rotor transport helicopter with multiple sling
attachment points. It has the following mass and inertia properties:

Mass (lb) Moments of Inertia (slug.ft2)
mh Ixx Iyy Izz Ixz

33000 34000 202500 191000 14900

5.1 Unloaded Helicopter Dynamic Modes

The aerodynamic model used for both helicopters was based on simple linear state-
space formulation with six degrees of freedom and four control inputs. For the CH-53D,
the stability and control derivatives, as well as the corresponding trim conditions, were
obtained from Reference [35]. Several small modifications were also made as applied in
Reference [11] in order to perform a valid comparison. For the CH-47B, the derivatives
and trim conditions were obtained from Reference [27]. Since the aim of this analysis
was simply to determine the modes of oscillation for the helicopter slung-load system, the
Automatic Flight Control System (AFCS) was not implemented.

In the above references, the stability and control derivatives for both helicopter models
were tabulated for a range in trim airspeed. For the CH-53D, the derivatives were given
for speeds of 0, 10, 20, 40, 60, 80, 100, 120, and 140 KTAS. Furthermore, to illustrate the
change in behaviour of the unloaded helicopter, the eigenvalues were calculated at each of
these airspeeds and drawn on the complex plane in the form of a root locus plot.

Validation of the helicopter model developed in the current work was performed by
calculating the same eigenvalues at each airspeed and then comparing against those re-
ported in Reference [11]. Figure 11 presents the eigenvalues for the CH-53D obtained from
both analyses.

Although there are some small differences, the eigenvalues are generally quite close.
As in the previous section, those differences can be explained by the different linearisation
approaches. There was also some inherent error in transcribing the published results to
another graph by hand. The behaviour of the CH-53D is fully analysed in Reference [11]
and will not be discussed here. Instead, the behaviour of the CH-47B over a range of
airspeeds will be examined. In Reference [27], the stability and control derivatives were
given for speeds of 0.1, 20, 40, 60, 80, 100, 120, and 130 KTAS. Again, the eigenvalues
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Figure 11: CH-53D System Eigenvalues — Variation with Trim Airspeed (in KTAS)

were calculated at each of these airspeeds and drawn on the complex plane, as shown in
Figure 12.

The gridlines in each of these graphs represent lines of constant frequency and constant
damping factor. The curved lines define lines of constant frequency, which increase in value
from zero as they radiate out from the origin. The straight lines define lines of constant
damping factor. They decrease in a clockwise direction from a value of 1.0 (along the
negative real axis) to a value of -1.0 (along the posisive real axis). The positive imaginary
axis represents zero damping. Any modes on the positive right-hand side of the real axis
thus have a negative damping factor and are therefore unstable. Eigenvalues with non-zero
imaginary components represent oscillatory modes with a certain frequency and damping
factor, while those that lie along the real axis represent pure damping modes.

The CH-47B, like most conventional helicopters, has essentially three longitudinal
modes and three lateral modes. However, it should be noted that these modes change
markedly with airspeed and tend to be highly coupled. The modes consist of:

• A low-frequency, marginally unstable phugoid mode in hover, which decreases slightly
in damping as the airspeed increases to 20 KTAS. The frequency then decreases and
becomes stable at around 40 KTAS. Between 40 and 60 KTAS, the frequency in-
creases before decreasing again through to 130 KTAS. There is a distinct kink in
the root locus at 60 KTAS, mainly due to rapid changes in the influential stability
derivatives in this airspeed regime. Above 80 KTAS, the mode takes on a signifi-
cant lateral component, or side-motion. At 130 KTAS, the mode comprises all three
translational u, v, and w velocity components equally.

• A higher frequency, marginally unstable lateral phugoid mode, which also decreases
slightly in damping as the airspeed increases to 20 KTAS. From 20 to 130 KTAS,
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the frequency increases uniformly and the damping remains relatively constant. In
hover, the lateral phugoid mode resembles the low-frequency ‘swinging’ motion of
the longitudinal phugoid mode. As the airspeed increases, however, the mode looks
much more like a dutch-roll mode, typical of fixed-wing aircraft.

• A stable, pure damping mode in pitch, or pitch subsidence, which initially decreases
and then increases in damping with an increase in airspeed. This mode actually has
a larger roll-rate component at hover, then as the airspeed increases the pitch-rate
component becomes more dominant, reaching a peak at 40 KTAS before decreasing.
Above 60 KTAS, the mode has a large w velocity component.

• Another stable, pure damping mode in roll, or roll subsidence, which initially in-
creases and then decreases in damping with an increase in airspeed. Complimentary
to the previous mode, this mode has a larger pitch-rate component at hover, and as
the airspeed increases, the roll-rate component becomes more dominant. There is
little change in the mode shape thereafter.

• A stable, pure damping heave subsidence mode, which generally decreases in damp-
ing with an increase in airspeed. The u and v velocity components increase and the w
velocity component decreases from hover to approximately 30 KTAS. At this point,
the u and v velocity components both decrease to near-zero values. The w velocity
decreases by only a small amount before remaining relatively constant through to
130 KTAS.

• An initially stable pure damping mode in yaw, which decreases in damping with an
increase in airspeed, becoming statically unstable at approximately 32 KTAS. The
damping continues to decrease rapidly until an airspeed of 40 KTAS, when it settles
to a constant value. The v velocity component varies throughout the speed range,
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while the u any w components both increase greatly at the crossover airspeed. The
pitch rate component also increases at 32 KTAS, becoming the dominant part of
the motion. The yaw rate component, however, actually decreases from its value at
hover and remains small by comparison.

The eigenvalues representing each of these modes at airspeeds of 0.1 KTAS (hover)
and 130 KTAS are tabulated below. The corresponding natural frequency and damping
factor are also listed for each mode.

Table 2: Natural Frequency and Damping for CH-47B at 0.1 KTAS
Mode Eigenvalue Natural Damping

Frequency (rad/s) Factor

Longitudinal phugoid 0.1099 ± 0.5026i 0.5145 -0.2137
Pitch subsidence -1.4853 1.4853 1.0000
Heave subsidence -0.3003 0.3003 1.0000
Lateral phugoid 0.0453 ± 0.4829i 0.4850 -0.0934
Roll subsidence -1.3396 1.3396 1.0000
Yaw mode -0.0766 0.0766 1.0000

Table 3: Natural Frequency and Damping for CH-47B at 130.0 KTAS
Mode Eigenvalue Natural Damping

Frequency (rad/s) Factor

Longitudinal phugoid -0.0619 ± 0.1534i 0.1654 0.3744
Pitch subsidence -2.9048 2.9048 1.0000
Heave subsidence -0.0144 0.0144 1.0000
Lateral phugoid 0.0610 ± 0.8754i 0.8775 -0.0695
Roll subsidence -1.2224 1.2224 1.0000
Yaw mode 0.6008 0.6008 1.0000

5.2 Analysis of Helicopter Slung-Load System Modes

As with the unloaded helicopter model, the results obtained for the combined helicopter
and load were compared with those documented in Reference [11]. The eigenvalues for a
range of configurations of the CH-53D in hover with a MILVAN load were examined. In
particular, the load-to-helicopter mass ratio ml/mh was varied between 0.1 and 0.6. The
load was slung using multiple cables (sling legs) and a single helicopter attachment point,
and the distance between the attachment point and load cg was 25 ft. Figures 13 and 14
illustrate the root loci for this system in both longitudinal and lateral axes.

The additional eigenvalues in these diagrams represent the modes associated with the
pendulous motion of the load and will be discussed later in this section. Note also that
the heave subsidence and yawing modes were not included in the previous results and
are therefore not shown here. Nonetheless, all of the remaining modes agree quite well,
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Figure 13: CH-53D with Single Slung Load Longitudinal Eigenvalues at Hover — Variation
with Load-to-Helicopter Mass Ratio
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particularly in the lateral axes. Small discrepancies have come about due to the same
reasons discussed above.

A similar numerical analysis was conducted with the CH-47B in hover and a single
MILVAN load attached with the same sling configuration as the CH-53D, shown in Fig-
ure 15.

ml

mh

Figure 15: Multiple Cable Sling Configuration

The load-to-helicopter mass ratio in this case was varied from 0.1 to 1.0. Figures 16
and 17 illustrate the change in system behaviour with mass ratio.

The helicopter slung-load system comprises the same typical helicopter modes intro-
duced previously, as well as an additional pendulum mode in each axis. These pendulum
modes can be attributed to the simple swinging motion of the load beneath the helicopter.
For low load weights, the modes are largely decoupled from the helicopter motion and
approach that of a similar pendulum system, with frequencies as given in Appendix B,
Equation (B23). As the load weight is increased, it has more influence on the motion of
the helicopter. The frequencies approach that of a double-pendulum system, as in Equa-
tion (B21), in the appendix2. Furthermore, the damping for both lateral and longitudinal
pendulum modes generally increases, producing a stabilising effect.

In contrast, the effect of increasing the load mass on the other modes is destabilising.
The damping of the pitch, heave, and roll modes generally decreases; the yaw mode changes
very little. The effect on the unstable phugoid modes is perhaps more critical. From the
diagrams, the longitudinal phugoid mode mainly changes in frequency — only decreasing
by a small amount. The lateral phugoid mode, however, undergoes a significant decrease
in damping as the load weight increases. Since this mode is already unstable, this would
result in a more rapid divergence from trim. In summary, the net effect of increasing the
load weight would therefore be a marginal stabilisation of the pendulum modes and a more
significant destabilisation of the phugoid modes.

Another numerical experiment with the CH-47B in hover and a single MILVAN load
attached with a range of sling configurations was also conducted. In this test, the load and
bridle arrangement was attached by a single pendant cable to the helicopter, as shown in
Figure 18.

The ratio of the pendant length to total sling length, `/L, was varied from 0.1 to 0.9.

2A more accurate estimate which incorporates the helicopter’s moment of inertia can be obtained by
using Equation (B15).
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Figure 16: CH-47B with Single Slung Load Longitudinal Eigenvalues at 0.1 KTAS —
Variation with Load-to-Helicopter Mass Ratio
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Figure 17: CH-47B with Single Slung Load Lateral Eigenvalues at 0.1 KTAS — Variation
with Load-to-Helicopter Mass Ratio
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L

Figure 18: Single Cable Sling Configuration

The total sling length (the distance between the helicopter attachment point and load cg)
remained constant at 25 ft and the mass ratio was 0.05. Root locii for the longitudinal
and lateral modes are illustrated in Figures 19 and 20, respectively.

In this configuration, there are two pendulum modes in each axis, which reflect the
extra two degrees of freedom in load pitch and load roll. The first low-frequency mode
can be associated with the gross swinging motion of the load-bridle subsystem beneath
the helicopter. The second high-frequency mode can be associated with the pitching or
rolling motion of the load about its cg. Since the mass ratio in this case is quite low, the
natural frequencies of oscillation can be estimated quite accurately using Equation (B15)
in Appendix B.

As the length ratio increases, this second pendulum mode increases in frequency quite
dramatically. For this particular load, the frequency of the lateral mode is approximately
double that of the longitudinal mode due to the smaller moment of inertia about the roll
axis. All other modes, including the low frequency pendulum modes, do not change by
any significant amount with an increase in the length ratio.

The last component in the analysis of the system modes was concerned with multiple-
load configurations. To this end, the dynamic characteristics of the CH-47B with multiple,
individually slung loads was examined. It could be reasonably assumed that the addition
of extra loads would simply add more pendulum modes to the system. However, it is
interesting to see the placement of those modes, as well as any effect on the other modes.
Figure 21 illustrates the variation in the system modes for zero, one, two, and three
individually attached loads. The parameter n denotes the number of bodies, including the
helicopter, in the system.

For this analysis, simple box-type loads were used. As with the MILVAN, the moments
of inertia for each load were approximated with linear functions of their mass by

Ixx = Iyy = Izz = 0.33 ∗ml (31)

The weight of each load was the same, and for each configuration, the total load-to-
helicopter mass ratio was kept constant at 1.0. The loads were each slung using multiple
cables (sling legs) attached to individual helicopter hook points, and the distance between
each attachment point and the corresponding load cg was 25 ft.
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Figure 19: CH-47B with Single Slung Load Longitudinal Eigenvalues at 0.1 KTAS —
Variation with Pendant-to-Sling Length Ratio
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Figure 20: CH-47B with Single Slung Load Lateral Eigenvalues at 0.1 KTAS — Variation
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Figure 21: CH-47B with Multiple Slung Loads Eigenvalues at 0.1 KTAS — Variation with
Number of Loads

For the unloaded helicopter, the modes consist of two oscillatory modes (longitudi-
nal and lateral phugoid) and four damping modes (including pitch, roll, heave, and yaw
subsidence). Recall from the previous section that the pitch and roll modes are actually
swapped around in hover. The single-load (centre hook) configuration has two additional
modes (one longitudinal and one lateral pendulum mode), both of which are stable. How-
ever, the addition of one or more loads, or a number of loads further destabilises the lateral
phugoid mode. It also significantly decreases the damping in pitch, roll, and heave modes
and, to a much lesser extent, the yaw mode. The dual-load (forward and aft hooks) config-
uration has those, plus two more oscillatory modes, which are all highly coupled. The first
two pendulum modes, which have approximately the same locations as in the single-load
case, describe longitudinal and lateral motions in which the loads swing in phase. The
next two pendulum modes are very lightly damped and describe motions in which the
loads swing out of phase. They have little effect on the helicopter motion. The triple-load
(all hooks) configuration also has the typical single-load style modes, plus four additional
pendulum modes. They describe two longitudinal and two lateral motions in which the
loads swing in various combinations.

5.3 Flight Simulation

Further to the modal analysis, a number of simulations were run in order to demon-
strate the typical behaviour of helicopter slung-load systems. The first of these demon-
strates the longitudinal response of a simple single-load configuration. In this case, a
MILVAN load was slung with a single pendant cable to a CH-47B helicopter, as in the
configuration shown previously (Figure 18). The ratio of the pendant length to total sling
length was set to 0.6, and the total sling length to 25 ft. The load-to-helicopter mass ratio
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was 0.05.

Figure 22 shows time-histories of the body-axis velocities, pitch rate and angle, cable
angle and tension, and control inputs. Figure 23 illustrates the motion of the helicopter
and slung load through the duration of the simulation.

In the time-history plots, u and w are the velocities in x and z directions of the body
axes respectively, q is the pitch rate, θ is the pitch angle, and θc is the cable angle displaced
from the vertical position. The cable tension force, nondimensionalised by the load weight,
is denoted by fc. The longitudinal cyclic and collective control inputs are represented by
δb and δc, respectively.

For this 10 second simulation, the helicopter and slung load were given an initial
forward velocity of 80 ft/s and the load was displaced from its static equilibrium position
by 30◦. The control inputs were generated so as to maintain a nose-level attitude in the
helicopter. Both primary and secondary pendulum modes can be readily identified in the
response of the load, most notably in the cable angle. In general, the system behaved as
expected, with the load having little effect on the behaviour of the helicopter. It is also
worth noting that the peaks in the cable tension correspond to the extremes of the pitch
rates and have a maximum value of up to 1.5 times their static load.

The second simulation demonstrates the combined longitudinal and lateral response of
the same single-load configuration. However, for this case, the mass ratio was increased
to 1.0. The duration was 20 seconds, although only the first 10 seconds of the simulation
are shown in Figure 24. Variables shown are the body-axis velocities and accelerations,
the angular displacements and rates, and the cable angles and tension. The flight path of
the helicopter and slung load are depicted in Figure 25.

In these plots, v is the velocity in the y direction of the body axes, p and r are the roll
and yaw rates, φ is the bank angle, and φc is the cable angle displaced from the vertical
position. The variables u̇, v̇, and u̇ represent the accelerations in body axes.

Unlike the previous simulation, the initial state was hover. The load was displaced
from its static equilibrium position by 30◦ in pitch and 15◦ in bank. In order to observe
the influence of the load on the helicopter, the controls were held fixed (at zero) for the
entire 20 second simulation. Both primary and secondary longitudinal pendulum modes
are visible in the cable pitch angle, and both lateral modes are also visible in the cable bank
angle. These also induce a yawing motion, seen in the yaw rate, due to lateral-directional
coupling, and although it may seem so, this motion is not oscillatory. The rolling modes
are generally of higher frequency than the pitching modes, given their lower moment of
inertia. However, due to the more unstable lateral phugoid mode of the helicopter, the
rolling motion of the load has a greater consequence on the resultant motion of the system.
This is what causes the rapid divergence in the velocity v. Again, the cable tension reached
a peak of nearly 1.5 times the static load.

The last simulation that has been included in this report demonstrates the full response
of a multiple-load configuration. Three box-shaped containers with an equal mass ratio
of 0.33 were attached to the three hook points under the CH-47B. They were each slung
using four cables (Figure 15), and the length from the helicopter attachment points to
each load cg was set to 15, 20, and 25 ft.
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Figure 25: Coupled Dynamic Response Simulation of CH-47B with Single Slung Load —
Simulation Frames (ml/mh = 1.0)
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Figure 26: Coupled Dynamic Response Simulation of CH-47B with Three Slung Loads —
Simulation Frames (ml/mh = 0.33)
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Figures 26 and 27 contain the simulation time histories and helicopter slung-load flight
path respectively. Again, only the first 10 seconds of the time histories are shown.

As before, the initial state for the helicopter was hover. All of the loads were displaced
from their equilibrium positions in both pitch and bank by arbitrary angles from 0◦ to 30◦.
The controls were also held fixed for the duration of the simulation, which was just over
20 seconds. From the first set of plots, the fundamental frequency for each of the slung
loads is visible. The slight difference in their frequency, due to the different sling lengths,
is perhaps best seen in the pitch rate and angle. There is also a significant coupling effect,
which induces a yawing motion. Unstable longitudinal and lateral modes again cause
divergence in the velocities u and v.
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6 Concluding Remarks

A simulation model was produced using the equations of motion for general slung-load
systems developed by Cicolani and Kanning [29]. The formulation used is based on the
Newton-Euler equations written in terms of generalised coordinates and can be readily
adapted to systems with either elastic or inelastic suspension. All code development,
including the simulation routine, linear analysis, and graphical replay tools, was done
in MATLAB. Further to the model described, the simulation has also been extended to
incorporate multiple-load systems.

Following comparison of the behaviour of a simple pendulum-type system against both
analytical solutions and previously published results, the open-loop characteristics of a
full helicopter slung-load system was examined. The results presented include the modal
analysis of a single-load system and the simulation of a multiple-load system. It was found
that the frequency of the longitudinal and lateral pendulum modes generally increases with
the load-to-helicopter mass ratio. More importantly, the lateral phugoid mode becomes
significantly unstable as the mass ratio is increased. For the simulation demonstrated, the
dominant natural frequencies were identified.
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Appendix A: Governing System Equations

The general helicopter slung-load system under consideration is illustrated in Figure A1.
As explained in Section 3, the system consists of a single helicopter supporting one or
more loads by means of some suspension. The model is comprised of n rigid bodies,
B1,B2,...,Bn, with m links supporting a single force. If the loads all have either multiple
or single cable suspensions, then m = n − 1. Furthermore, if the suspensions are all of
single-cable type, as in the example shown, there are m cables, C2,...,Cn.

B2

Bj

Bn

2

j
n

Cj
C2

Cn

B1

a2 aj an

Figure A1: General Helicopter Slung-load System

General Transformation Matrices

For scalar representation of the vector cross products, the general form of the skew-
symmetric matrix S(Va) is defined as

S(Va) =
[

(V × ia)a (V × ja)a (V × ka)a

]

=




0 −vaz vay

vaz 0 −vax

−vay vax 0




where the columns of S(Va) represent cross products of V with the axes of the frame Fa,
each referred to Fa.

Using this formulation, the cross products representing Coriolis velocities and acceler-
ations can be written as

(ω ×R)a = S(ωa) Ra = −S(Ra) ωa

(ω ×V)a = S(ωa) Va = −S(Va) ωa
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and the centrifugal accelerations as

(ω × ω ×R)a = S2(ωa) Ra = −S(ωa) S(Ra) ωa

Defining the Euler-angle transformation

Tb,N =




cosψb cos θb sinψb cos θb − sin θb

sinφb cosψb sin θb − cosφb sinψb sinφb sinψb sin θb + cosφb cosψb sinφb cos θb

cosφb cosψb sin θb + sinφb sinψb cosφb sinψb sin θb − sinφb cosψb cosφb cos θb




and the inverse
TN,b = T T

b,N

the angular velocities can be expressed in terms of the Euler-angle rates via the transfor-
mation

wbb = Wbbα̇b

where

Wbb =




1 0 − sin θb

0 cosφb sinφb cos θb

0 − sinφb cosφb cos θb




with inverse

Wb−1
b =




1 sinφb tan θb cosφb tan θb

0 cosφb − sinφb

0 sinφb/ cos θb cosφb/ cos θb




Cable-Axes (Single-Cable Suspension)

Cable-direction vector:

kcjN =
1
lj0

(Rj∗N + TN,jRj∗jj −R1∗N − TN,1R1∗aj1)

Cable angles:

kcjN = TN,cjkcjcj =




cos θcj sinφcj sin θcj cosφcj sin θcj

0 cosφcj − sinφcj

− sin θcj sinφcj cos θcj cosφcj cos θcj







0
0
1




=




cosφcj sin θcj

− sinφcj

cosφcj cos θcj




The cable angles are obtained from the cable direction vector

φcj = sin−1(−kcjN (2))
θcj = sin−1( kcjN (1) / cosφcj)
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Velocity of each cable:

V ajjcj = l̇j kcjcj + lj kcj̇cj

=




lj cosφcj 0 0
0 −lj 0
0 0 1







θ̇cj

φ̇cj

l̇j




where

kcj̇cj = ωcjcj × kcjcj =




φ̇cj

cosφcj

−θ̇cj sinφcj


×




0
0
1




=




θ̇cj cosφcj

−φ̇cj

0




so that the cable angle rates can be derived as

φ̇cj = −V ajjcj(2) / lj

θ̇cj = V ajjcj(1) / lj cosφcj

Simulation Equations for an Arbitrary Number of Loads

Cable lengths:

lj(r) = |R1∗N + TN,1R1∗aj1 −Rj∗N − TN,jRj∗jj |

The cg position of each load:

Rj∗N = R1∗N + TN,1R1∗aj1 + RajjN − TN,jRj∗jj

and their velocity:

V j∗N = V 1∗N + ṪN,1R1∗aj1 + V ajjN − ṪN,jRj∗jj

= V 1∗N − TN,1S(R1∗aj1)w11 + V ajjN + TN,jS(Rj∗jj)wjj

where
V ajjN = TN,cjV ajjcj

Hence,
V j∗N = V 1∗N + TN,cjV ajjcj + Aj,n+1w11 + Aj,n+jwjj

and inversely

V ajjcj = −Tcj,NV 1∗N + Tcj,NV j∗N + Bj,n+1w11 + Bj,n+jwjj

with the elements

Aj,n+1 = −TN,1S(R1∗aj1)
Aj,n+j = TN,jS(Rj∗jj)
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Bj,n+1 = −Tcj,NAj,n+1

Bj,n+j = −Tcj,NAj,n+j

Configuration kinematics:

v = Au




V 1∗N
V 2∗N

...
V n∗N
−

w11

w22
...

wnn




=




I 0 · · · 0 | 0 0 · · · 0
I TN,c2 0 | A2,n+1 A2,n+2 0
...

. . . | ...
. . .

I 0 TN,cn | An,n+1 0 An,2n

− − − − + − − − −
|

0 | I
|
|







V 1∗N
V a22c2

...
V anncn

−
w11

w22
...

wnn




u = A−1v




V 1∗N
V a22c2

...
V anncn

−
w11

w22
...

wnn




=




I 0 · · · 0 | 0 0 · · · 0
−Tc2,N Tc2,N · · · 0 | B2,n+1 B2,n+2 · · · 0

...
...

. . . | ...
...

. . .
−Tcn,N 0 Tcn,N | Bn,n+1 0 Bn,2n

− − − − + − − − −
|

0 | I
|
|







V 1∗N
V 2∗N

...
V n∗N
−

w11

w22
...

wnn




Acceleration vector:

v̇ = Ȧu + Au̇

Applied forces and inertia coupling:

fo = fg + fa−X −DȦu
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F01N

F02N
...

F0nN

−
M011

M022
...

M0nn




=




m1gN

m2gN
...

mngN

−
0
0
...
0




+




FA1N

FA2N
...

FAnN

−
MA11

MA22
...

MAnn




−




0
0
...
0
−

S(ω11)J1ω11

S(ω22)J2ω22
...

S(ωnn)Jnωnn




−




0
m2Ȧ2u

...
mnȦnu
−
0
0
...
0




where

Ȧ =




0 0 · · · 0 | 0 0 · · · 0
0 Ȧ2,2 · · · 0 | Ȧ2,n+1 Ȧ2,n+2 · · · 0
...

...
. . . | ...

...
. . .

0 0 Ȧn,n | Ȧn,n+1 0 Ȧn,2n

− − − − + − − − −
|

0 | 0
|
|




where the elements

Ȧj,j = TN,cjS(wcjcj)
Ȧj,n+1 = −TN,1S(w11)S(R1∗aj1)
Ȧj,n+j = TN,jS(wjj)S(Rj∗jj)

Suspension forces:
fc = H τ




FC1N

FC2N
...

FCnN

−
MC11

MC22
...

MCnn




=




kc2N · · · kcnN

−kc2N 0
. . .

0 −kcnN

− − −
ξ121 · · · ξ1n1

−ξ222 0
. . .

0 −ξnnn







τ2
...

τn




where
ξ1j1 = (R1∗aj × kcj)1 = S(R1∗aj)1T1,N kcjN

ξjjj = (Rj∗j × kcj)j = S(Rj∗j)jTj,N kcjN

yielding

τ =
{

(max{0,Kj(lj − loj)}, j = 2, . . . , n)T (elastic cables)
−[HT D−1H]−1HT D−1fo (inelastic cables)
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Total specific force:
sf = D−1(fo + fc)




SF1N

SF2N
...

SFnN

−
SM11

SM22
...

SMnn




=




(F01N + FC1N )/m1
(F02N + FC2N )/m2

...
(F0nN + FCnN )/mn

−
J1−1(M011 + MC11)
J2−1(M022 + MC22)

...
Jn−1(M0nn + MCnn)




Configuration acceleration:
u̇ = A−1sf

Configuration position vector:

r =
∫

ṙ(r, v) dt

r =




R1∗N
R2∗N

...
Rn∗N
−
α1
α2
...

αn




=
∫




V 1∗N
V 2∗N

...
V n∗N
−

W1−1
1 w11

W2−1
2 w22
...

Wn−1
n wnn




dt
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Appendix B: Analytical Results for

Pendulum-Type Systems

There are a number of publications, including Reference [36], which list the natural fre-
quencies and mode shapes for various pendulum-type systems. However, for the purpose
of this work, the equations of motion were derived and the resulting natural frequencies
found for a set of systems that can be used to approximate a helicopter and slung load.
The generalised system is analysed first and then several approximations for both single
and multiple cable configurations are examined.

Generalised Two-Body system

The generalized two-body system examined in this appendix consists of a sliding mass
which is pinned at its centre of gravity and a swinging mass attached below it, as illustrated
in Figure B1. The supporting body of mass ms and inertia Js is free to pitch and transverse
along the x-axis, while the suspended body or load of mass ml and inertia Jl is constrained
just to swing about its attachment point.

θ 

θl

ml , Jl

a

r

x

xl

ms , Js

Figure B1: Generalized Two-body Pendulum-type System

In order to solve for the natural frequencies of the system, the equations of motion
must first be stipulated. For simplicity, any perturbations about the equilibrium position
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are assumed to be small. As a result, the trigonometric components of a small angle θ can
be reduced to sin θ ≈ θ and cos θ ≈ 1.

The sum of moments about the cgs of the support and load are respectively

Jsθ̈ = Qr (B1)
Jlθ̈l = −Pa(θl − θ) + Qa

and the balance of horizontal forces for each body are

msẍ = Pθ + Q (B2)
mlẍl = −Pθ −Q

The normal component P of the interaction force can be approximated by the mass-
force of the load, whereas the tangential component Q is given by the sum of moments
about the supporting body (Eq. (B1)), i.e.

P ≈ mlg (B3)

Q =
Js

r
θ̈

Substituting these into Equation (B1) produces the first equation of motion, which can
be rewritten as

Jlθ̈l = −mlga(θl − θ) +
Jsa

r
θ̈ (B4)

Jsa

r
θ̈ + mlgaθ − Jlθ̈l −mlgaθl = 0 (B5)

The second equation of motion is derived by subtracting Equations (B2) to give

ẍl − ẍ = − 1
ml

(Pθ + Q)− 1
ms

(Pθ + Q) (B6)

and applying the geometric relationship

xl − x = rθ + aθl (B7)

This produces the second equation of motion, written as

rθ̈ + aθ̈l = − 1
ml

(mlgθ +
Js

r
θ̈)− 1

ms
(mlgθ +

Js

r
θ̈) (B8)

(r +
Js

mlr
km)θ̈ + gkmθ + aθ̈l = 0 (B9)

where
km = (1 +

ml

ms
) (B10)

In matrix format, Equations (B5) and (B9) can be expressed as
[ Jsa

r −Jl

r + Js
mlr

km a

] [
θ̈

θ̈l

]
+

[
mlga −mlga
gkm 0

] [
θ
θl

]
=

[
0
0

]
(B11)
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Assuming that the free vibrations are harmonic in time with frequency ω, the equations
of motion will have a non-trivial solution if the following determinant is equal to zero:

∣∣∣∣
−Jsa

r ω2 + mlga Jlω
2 −mlga

−(r + Js
mlr

km)ω2 + gkm −aω2

∣∣∣∣ = 0 (B12)

This results in the characteristic equation

Aω4 + Bω2 + C = 0 (B13)

where

A =
Jsa

2

r
+ Jl(r +

Js

mlr
km) (B14)

B = −mlga2 − Jlgkm −mlga(r +
Js

mlr
km)

C = mlg
2akm

Finding the roots of Equation (B13) provides a solution for the natural frequencies,
i.e.

ω2 =
−B ± [B2 − 4AC]1/2

2A
(B15)

This general system can be used to approximate a helicopter slung-load configuration,
where the helicopter is free to pitch about its cg and the load is attached using a multi-cable
sling. It is also possible to further simplify the system to represent other configurations
as demonstrated in the following sections.

Single-cable System

In order to simulate a single-cable slung-load configuration, shown in Figure B2, the
pitching freedom of the supporting body must be translated into that of the single-cable
attachment. This may be achieved by setting the inertia of the supporting body to zero
while holding the mass constant. If this mass is finite, a sliding-body system results, in
which the supporting body is free to transverse along the horizontal. If the mass is infinite,
the system simplifies to a fixed-body approximation.

Sliding Body

Setting Js = 0 for the single-cable system, and denoting the lengths ` = r and L = `+a,
the characteristic equation becomes

Jl`ω
4 − (mlgaL + Jlgkm)ω2 + mlg

2akm = 0 (B16)

with roots

ω2 =
(mlgaL + Jlgkm)± [(mlgaL + Jlgkm)2 − 4Jl`mlg

2akm]1/2

2Jl`
(B17)
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ml , Jl

�

a

ms , Js

Figure B2: Single-cable Pendulum System

Fixed Body

Again, setting Js = 0, but now let ms →∞, which implies that km → 1,

Jl`ω
4 − (mlgaL + Jlg)ω2 + mlg

2a = 0 (B18)

ω2 =
(mlgaL + Jlg)± [(mlgaL + Jlg)2 − 4Jl`mlg

2a]1/2

2Jl`
(B19)

which corresponds to the solution for a single cable-suspended body, one type of the
“double-pendulum” system.

Multi-cable System

To simulate a multi-cable slung-load system, it is possible to either use Equations
(B13) and (B15), or further simplify to constrain rotation of the supporting body, shown
in Figure B3. This may be implemented by taking the limit as the inertia approaches
infinity. Once again, the corresponding mass can be adjusted to simulate either a sliding
or fixed-body system.

Sliding Body

For Js →∞, the characteristic equation becomes

(
a2

r
+

Jl

mlr
km)ω4 − ga

r
kmω2 = 0 (B20)

with roots

ω2 =
{

0,
mlgakm

mla2 + Jlkm

}
(B21)
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ml , Jl

a

ms , Js

Figure B3: Multi-cable Pendulum System

Fixed Body

As above, Js →∞. Also, letting ms →∞ results in km → 1,

(
a2

r
+

Jl

mlr
)ω4 − ga

r
ω2 = 0 (B22)

ω2 =
{

0,
mlga

mla2 + Jl

}
(B23)

Clearly, this corresponds to the solution for a single pendulum system with mass ml

and inertia Jl.
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Appendix C: CH-47D Chinook Helicopter

Aerodynamic Model

The aerodynamic model used for the CH-47D was based on a set of linearised stability
and control derivatives taken from Reference [27]. The derivatives, as well as associated
trim conditions, were computed from a series of simulation runs at various airspeeds using
the NASA Ames Research Center simulation model.

In order to make use of this data, the derivatives in the model were interpolated between
neighbouring sets with respect to the current airspeed. The resultant aerodynamic forces
and moments were then evaluated as a linear function of the state variables. In state-space
form, the forces can be written

FA/mh = Ax + Bu (C1)

where FA is the resultant force, x is the vector of state variables, and A and B are matrices
comprising the stability and control derivatives respectively. Expanding Equation (C1)



FAx/mh

FAy/mh

FAz/mh

MAx/Ixx

MAy/Iyy

MAz/Izz




=




Xu Xv Xw Xp Xq Xr

Yu Yv Yw Yp Yq Yr

Zu Zv Zw Zp Zq Zr

Lu Lv Lw Lp Lq Lr

Mu Mv Mw Mp Mq Mr

Nu Nv Nw Np Nq Nr







u
v
w
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q
r




+




Xδb Xδa Xδr Xδc

Yδb Yδa Yδr Yδc

Zδb Zδa Zδr Zδc

Lδb Lδa Lδr Lδc

Mδb Mδa Mδr Mδc

Nδb Nδa Nδr Nδc







δb

δa

δr

δc




The trim conditions, denoted by subscript ”0”, and aerodynamic derivatives, in column
format, for each of the tabulated airspeeds from 0.1 to 130 KTAS are summarised in the
following pages.
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Run #33 : Straight & level trim ; 0.1 KTAS ; 97.0 ft ; 33000 lb

u0 v0 w0 φ0 θ0 ψ0 δb0 δa0 δr0 δc0

0.1000 0.0000 0.0000 -0.4453 6.6120 0.0000 -0.0057 0.2262 -0.0032 5.7555

u v w p q r δb δa δr δc

X -0.0200 -0.0005 0.0301 0.0426 2.7807 -0.1590 0.0570 0.0000 -0.0000 0.9816

Y -0.0003 -0.1070 0.0022 -2.8362 -0.0073 -0.3305 -0.0005 1.0917 0.0099 0.0657

Z 0.0311 0.0040 -0.2983 -0.1252 -0.2647 -0.0525 0.0499 -0.0001 0.0000 -8.4737

L -0.0005 -0.0108 0.0004 -1.2795 0.0871 -0.0903 -0.0346 0.4863 -0.1263 -0.0170

M 0.0111 0.0000 0.0006 0.0295 -1.0973 -0.2686 0.3282 0.0000 0.0000 -0.0014

N 0.0007 0.0006 0.0000 -0.0148 -0.1338 -0.0892 0.0541 0.0097 0.1927 -0.0006

Run #37 : Straight & level trim ; 20.0 KTAS ; 97.5 ft ; 33000 lb

u0 v0 w0 φ0 θ0 ψ0 δb0 δa0 δr0 δc0

19.900 0.0000 1.9000 -0.3858 5.4756 0.0000 -1.4901 0.2162 0.2492 5.6003

u v w p q r δb δa δr δc

X -0.0128 0.0001 0.0268 0.0277 2.8998 -0.1112 0.0422 0.0001 -0.0001 0.7238

Y 0.0021 -0.0460 0.0044 -1.5122 -0.1552 -0.2018 0.0632 1.0867 -0.0077 0.0534

Z -0.0405 0.0044 -0.2824 -0.1057 -2.7731 0.1764 0.2517 -0.0010 0.0012 -8.4539

L 0.0004 -0.0088 0.0008 -0.8862 0.0239 -0.0647 -0.0105 0.4856 -0.1310 -0.0218

M 0.0156 -0.0009 0.0166 0.0171 -1.6339 -0.2477 0.3355 -0.0000 0.0002 -0.0083

N 0.0009 0.0002 0.0007 -0.0059 -0.1519 -0.0764 0.0525 0.0086 0.1917 0.0021
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Run #41 : Straight & level trim ; 40.0 KTAS ; 98.0 ft ; 33000 lb

u0 v0 w0 φ0 θ0 ψ0 δb0 δa0 δr0 δc0

39.900 0.0000 3.0000 -0.2941 4.2599 0.0000 -2.3407 0.2137 0.3750 5.1744

u v w p q r δb δa δr δc

X -0.0145 0.0007 0.0285 0.0261 2.8099 -0.0915 0.0353 0.0000 0.0000 0.4914

Y -0.0005 -0.0594 0.0071 -1.7385 -0.2622 -0.2412 0.1073 1.0845 -0.0233 0.0654

Z -0.1080 0.0016 -0.3498 -0.0939 -3.2915 0.0318 0.6498 -0.0004 0.0002 -7.9678

L -0.0003 -0.0090 0.0027 -0.9513 -0.0703 -0.0839 0.0163 0.4856 -0.1353 -0.0096

M 0.0007 -0.0015 0.0259 0.0128 -1.7676 -0.2562 0.3744 0.0000 0.0001 0.1235

N 0.0003 0.0003 0.0000 -0.0048 -0.0823 -0.0683 0.0370 0.0076 0.1913 0.0054

Run #57a : Straight & level trim ; 60.0 KTAS ; 98.6 ft ; 33000 lb

u0 v0 w0 φ0 θ0 ψ0 δb0 δa0 δr0 δc0

60.000 0.0000 3.1000 -0.2445 2.9602 0.0000 -1.8241 0.1971 0.2589 4.7454

u v w p q r δb δa δr δc

X -0.0089 0.0005 0.0343 0.0213 2.6308 -0.0700 0.0475 0.0000 0.0000 0.3276

Y -0.0014 -0.0723 0.0044 -1.9788 -0.1340 -0.2488 0.0941 1.0852 -0.0444 0.0633

Z -0.0755 0.0024 -0.5636 -0.0627 0.6404 -0.1804 0.8431 -0.0004 0.0003 -8.1505

L -0.0008 -0.0093 0.0020 -1.0201 -0.0664 -0.0888 0.0205 0.4867 -0.1417 -0.0018

M -0.0073 -0.0013 0.0145 0.0199 -1.5813 -0.2736 0.4118 0.0000 0.0001 0.2338

N 0.0003 0.0007 -0.0003 -0.0045 -0.0501 -0.0632 0.0291 0.0063 0.1913 0.0046

Run #57b : Straight & level trim ; 80.0 KTAS ; 98.6 ft ; 33000 lb

u0 v0 w0 φ0 θ0 ψ0 δb0 δa0 δr0 δc0

80.000 0.0000 4.1000 -0.2420 2.9508 0.0000 -1.1228 0.1754 0.1152 4.6284

u v w p q r δb δa δr δc

X -0.0057 -0.0007 0.0428 0.0206 2.6311 -0.0647 0.0499 0.0000 0.0000 0.4185

Y -0.0009 -0.0878 0.0024 -2.0591 -0.0412 -0.2442 0.0690 1.0864 -0.0310 0.0473

Z 0.0230 0.0049 -0.6368 -0.0530 -0.4078 -0.1833 0.7232 -0.0006 0.0002 -9.3412

L -0.0007 -0.0102 0.0018 -1.0358 -0.0584 -0.0864 0.0182 0.4865 -0.1378 -0.0032

M -0.0081 -0.0008 0.0114 0.0264 -1.6518 -0.2755 0.4302 0.0000 0.0001 0.2260

N 0.0003 0.0013 -0.0006 -0.0118 -0.0279 -0.0622 0.0251 0.0071 0.1915 0.0050
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Run #57c : Straight & level trim ; 100.0 KTAS ; 98.7 ft ; 33000 lb

u0 v0 w0 φ0 θ0 ψ0 δb0 δa0 δr0 δc0

100.00 0.0000 4.6000 -0.2679 2.6354 0.0000 -0.6474 0.1746 0.0082 4.7818

u v w p q r δb δa δr δc

X -0.0126 -0.0014 0.0498 0.0215 2.6825 -0.0649 0.0500 0.0001 0.0000 0.4893

Y -0.0008 -0.1051 0.0008 -2.0089 0.0256 -0.2401 0.0566 1.0891 -0.0203 0.0572

Z 0.0780 0.0066 -0.6769 -0.0486 -0.5284 -0.1805 0.6178 -0.0008 0.0003 -10.3410

L -0.0007 -0.0113 0.0013 -1.0130 -0.0210 -0.0829 0.0091 0.4868 -0.1350 -0.0097

M -0.0068 -0.0004 0.0117 0.0321 -1.7096 -0.2839 0.4471 0.0000 0.0002 0.1998

N 0.0001 0.0018 -0.0007 -0.0178 -0.0608 -0.0606 0.0379 0.0078 0.1921 0.0082

Run #57d : Straight & level trim ; 120.0 KTAS ; 99.0 ft ; 33000 lb

u0 v0 w0 φ0 θ0 ψ0 δb0 δa0 δr0 δc0

120.10 0.0000 4.2000 -0.3341 1.9842 0.0000 -0.3143 0.1934 -0.1074 5.1578

u v w p q r δb δa δr δc

X -0.0277 -0.0016 0.0523 0.0237 2.7440 -0.0701 0.0528 -0.0000 -0.0001 0.5153

Y -0.0001 -0.1235 0.0005 -1.8659 0.1258 -0.2030 0.0338 1.0958 -0.0102 0.0643

Z 0.0631 0.0082 -0.7008 -0.0400 -0.4733 -0.2141 0.5106 -0.0009 0.0002 -10.9880

L -0.0005 -0.0125 0.0011 -0.9612 0.0029 -0.0699 0.0045 0.4884 -0.1328 -0.0128

M -0.0041 0.0001 0.0121 0.0389 -1.7035 -0.2984 0.4511 0.0000 0.0002 0.1824

N 0.0001 0.0021 -0.0007 -0.0256 -0.0641 -0.0669 0.0412 0.0085 0.1933 0.0135

Run #53 : Straight & level trim ; 130.0 KTAS ; 99.6 ft ; 33000 lb

u0 v0 w0 φ0 θ0 ψ0 δb0 δa0 δr0 δc0

130.20 0.0000 1.7000 -0.3833 0.7495 0.0000 -0.2349 0.2098 -0.1583 5.4493

u v w p q r δb δa δr δc

X -0.0378 -0.0018 0.0426 0.0248 2.7638 -0.0789 0.0658 0.0000 0.0000 0.3553

Y 0.0003 -0.1351 0.0029 -1.7771 0.1674 -0.1854 0.0272 1.1066 -0.0152 0.0593

Z 0.0132 0.0082 -0.7058 -0.0358 -0.3024 -0.2564 0.4628 -0.0004 0.0001 -11.1430

L -0.0005 -0.0132 0.0013 -0.9303 0.0149 -0.0707 0.0021 0.4918 -0.1355 -0.0147

M -0.0022 0.0003 0.0124 0.0420 -1.6772 -0.3087 0.4460 0.0000 0.0001 0.1911

N -0.0001 0.0023 -0.0007 -0.0293 -0.0689 -0.0565 0.0440 0.0083 0.1952 0.0150
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Appendix D: Matlab Source Code

HSL INIT.M

% HSL_INIT : Initialisation script for helicopter slung-load simulation

%

% HSL_INIT

% For details of the simulation, see reference [1].

%

% 1. Stuckey, R.A

% "Mathematical Modelling of Helicopter Systems"

% DSTO-TR-000, Defence Science and Technology Organisation, Sep, 1999

% R.A. Stuckey 17/08/99 (c) 1999, Defence Science and Technology Organisation

% -----------------------------------------------------------------------------

global opt_ HDAT_ LDAT_ CDAT_ % GLOBAL variables (defined below)

% First, define the simulation parameters: number of simulation points, time,

% control inputs, plus a few options such as the simulation axes, angular

% representation, the cable elasticity and nonlinear solution flags.

% Also define the number of bodies in the system (slung-loads + helicopter).

N = 101; % Number of points for simulation

t = [0:N-1]’*0.1; % Time vector

TD = [t,zeros(N,4)]; % Matrix of time & control input vectors

% TD = [ t db da dr dc ]

%

% db : longitudinal stick (in)

% da : lateral stick (in)

% dr : pedal (in)

% dc : collective (in)

opt_ = { ’com’ % Simulation axes [’longitudinal’|’lateral’|’combined’]

’eul’ % Angular representation [’euler’|’quaternion’]

0 % Elastic cable model [0|1]

1 }; % Nonlinear simulation [0|1]

n = 3; % Number of bodies

% Next, create/load the data structures for the helicopter and loads. These

% will contain all the relevent aerodynamic, mass, inertial and geometric

% information. Before starting, define some temporary variables (which are not

% required by the main program) for convinience. For each vector here, the

% first element not used but present merely to maintain consistency in the

% numbering.

eta = [ 0 0.33 0.33 ]; % Vector of mass ratios

lonL = [ 0 0.0 0.6 ]; % Vector of length ratios (’0’ for multiple-cable)

L = [ 0 20.0 25.0 ]; % Vector of total lengths (ft)

K = [ 0 0.0 0.0 ]; % Vector of cable stiffness (’0’ for inelasticity)

% The functions ’hsl_ch47bdat’ and ’hsl_boxdat’ have been written to simplify
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% the creation of standard helicopter and load data structures. The inputs

% required by the load function are, respectively: the load mass; the load

% inertia matrix; the bridle (sling-leg) length; the sling configuration; and

% the box size (ft). Empty matrices given for any of these will trigger their

% default values. The data structures for both helicopter and loads have

% exactly the same fields.

HDAT_ = hsl_ch47bdat; % GLOBAL struct for the helicopter and load, below

LDAT_ = struct(’Name’,[], ... % Name of body

’V’, [], ... % Velocity vector (kn)

’A’, [], ... % Aerodynamic derivative matrix

’m’, [], ... % Body mass (slugs)

’J’, [], ... % Inertia matrix (slugs.ft^2)

’S’, []); % Geometric model struct

LDAT_(2) = hsl_boxdat(eta(2)*HDAT_.m,[],[],’multiple’,[ 3.0 3.0 3.0 ]);

LDAT_(3) = hsl_boxdat(eta(3)*HDAT_.m,[],(lonL(3)-1)*L(3),’single’,[ 3.0 3.0 3.0 ]);

% The geometric model struct comprises patches, lines and links for rendering

% an image of the model. The links are also used in the mathematical model for

% solution of the equations of motion. That is, the (possibly elastic) slings

% are assumed to extend from the link(s) on each load to the correspondign link

% or attachment point on the helicopter. These structures look like:

%

% S.Patches.Data : Patch matrix (ft)

% S.Patches.CoordIndex : Patch coordinates

% S.Lines.Data : Line matrix (ft)

% S.Links.Data : Link matrix (ft)

% Create the data structures for the cables supporting each load. These contain

% the respective link attachment indices, cable lengths, cable stretch rates

% and the stiffness and damping constants. The link attachment matrix lists the

% helicopter link indices in the first row and the corresponding load link

% indices in the second row for each cable.

CDAT_ = struct(’i’ ,[], ... % Link attachment matrix

’l0’ ,[], ... % Cable lengths - unloaded (ft)

’l’ ,[], ... % Cable lengths - current (ft)

’ldot’,[], ... % Cable stretch rates - current (ft/s)

’K’ ,[]); % Cable stiffness & damping matrix

% The first load is supported by multiple (4) cables attached to the first

% (forward-most) link under the helicopter. The individual cable lengths are

% calculated from the bridle lengths and the total length (helicopter

% attachment to load cg). The stiffness matrix is empty, since this simulation

% is inelastic - as defined in opt_, above - and the remaining lengths and

% rates are set to their initial values.

CDAT_(2).i = [ 1 1 1 1 ; 1 2 3 4 ];

CDAT_(2).l0 = sqrt(sum((-LDAT_(2).S.Links.Data+ones(4,1)*[ 0 0 -L(2) ]).^2,2))’;

CDAT_(2).K = []; CDAT_(2).l = CDAT_(2).l0; CDAT_(2).ldot = 0*CDAT_(2).l0;

% The second load is supported by a single cable attached to the second (middle)

% helicopter link. The cable length is determined by the cable-to-total sling

% length ratio and the other fields are set as in the first load.

CDAT_(3).i = [ 3 ; 1 ];
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CDAT_(3).l0 = lonL(3)*L(3);

CDAT_(3).K = []; CDAT_(3).l = CDAT_(3).l0; CDAT_(3).ldot = 0*CDAT_(3).l0;

% The next step is to compile the combined system mass/inertia matrix from the

% corresponding helicopter and slung load matrices defined above. To constrain

% the motion of either helicopter or load in any of the [ x y z ] axes, just

% set the appropriate element(s) of the explicitly defined [ 0 0 0 ] vectors

% below to ’inf’. Note that this applies to both rectillinear motion, for the

% mass sub-matrices, and angular motion for the inertial sub-matrices.

D = zeros(n*6);

jj = [1:3];

D(jj,jj) = HDAT_.m*eye(3) + diag([ 0 0 0 ]); % Helicopter [ x y z ] mass

D(n*3+jj,n*3+jj) = HDAT_.J + diag([ 0 0 0 ]); % Helicopter [ x y z ] inertia

for j = 2:n

jj = (j-1)*3+[1:3];

D(jj,jj) = LDAT_(j).m*eye(3) + diag([ 0 0 0 ]); % Load [ x y z ] mass

D(n*3+jj,n*3+jj) = LDAT_(j).J + diag([ 0 0 0 ]); % Load [ x y z ] inertia

end

% Set the trim state for the helicopter slung-load system. The vector u0

% contains the generalised velocity coordinates. The vector r0 contains the

% configuration position coordinates. For the single cable case, the matrix

% ac0 contains the cable angles (in cable-axes). These variables are all

% temporary - the only vector required by the main program is the trim state

% of the system x0.

u0 = zeros(n*6,1); % Trim rate vector : Single-cable case

% u = [ V1*_N ; Va22_c2 ; ... ; Vann_cn

% w1_1 ; w2_2 ; ... ; wn_n ]

% : Multiple-cable case

% u = [ V1*_N ; Va22*_2 ; ... ; Vann*_n

% w1_1 ; w2_2 ; ... ; wn_n ]

r0 = zeros(n*6,1); % Trim position vector

% r = [ R1*_N ; R2*_N ; ... ; Rn*_N

% a1 ; a2 ; ... ; an ]

ac0 = zeros(n,3); % Trim cable-angle matrix : Single-cable case only

% ac = [ [ 0 0 0 ]’ ac2 ... acn ]

% From the documentation [*], the sub-vectors are defined:

% . . .

% V1*_N : helicopter [x,y,z] velocity vector in inertial axes

% Vajj_cj : load velocity vectors in cable axes

% w1_1 : helicopter [p,q,r] angular velocity vector in body axes

% wj_j : load [p,q,r] angular velocity vector in body axes

% Vajj*_j : load velocity vectors in load axes

%

% R1*_N : helicopter [x,y,z] position vector in inertial axes

% Rj*_N : load [x,y,z] position vector in inertial axes

% a1 : helicopter [phi,theta,psi] Euler angular position vector

% aj : load [phi,theta,psi] Euler angular position vector

%
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% acj : cable/cg-line [phi,theta,psi] angles in cable-axes

% The function ’hsl_load’ can be used to calculate the positions of the loads,

% Rj*_N, from the helicopter positions, the helicopter and load attitudes

% (all included in the vector, r0), the cable angles (in the vector, ac0) and

% the cable lengths (supplied globally through CDAT_.l0).

r0 = hsl_load(r0,ac0);

% Finally, the complete state vector can be constructed from the velocity and

% position vectors.

x0 = [u0;r0];

% Set the initial state for the helicopter slung-load system. The operations

% are exactly the same as those for the trim state variables. Setting them to

% different (non-zero) values will create an initial disturbance in the system.

u = zeros(n*6,1);

u(1:3) = [ 0 0 0 ]’;

r = zeros(n*6,1);

r(n*3+[1:n*3]) = [ 0 0 0 ...

-5 10 0 ...

0 0 0 ]’*pi/180;

ac = ac0;

ac(:,1:n) = [ 0 0 0

0 0 0

5 -10 0 ]’*pi/180;

r = hsl_load(r,ac);

x = [u;r];

% Now clear extraneous variables from the workspace and run the main program.

% The required inputs, as specified above, are:

%

% opt_ HDAT_ LDAT_ CDAT_ n t TD D x0 x

%

% The outputs are:

%

% U : Generalised velocity coordinate matrix

% R : Configuration position coordinate matrix using Euler angles

% R_q : Configuration position coordinate matrix using quaternions

% X : Full state variable matrix using Euler angles

% X_q : Full state variable matrix using quaternions

clear eta lonL L K j jj u0 r0 ac0 u r ac

hslsim

% Lastly, Plot the primary state and control variables as time histories.

xn = [1:N]; hslplot
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HSL CH47BDAT.M

function D = hsl_ch47bdat(mass,inertia,links)

% HSL_CH47BDAT : Aircraft aerodynamic, mass, inertial and geometric data

%

% DAT = HSL_CH47BDAT((mass)(,inertia)(,links))

%

% mass : Helicopter mass (slugs)

% inertia : Inertia matrix (slug.ft^2)

% links : Links data matrix (see HSL_INIT)

%

% DAT : Data structure (see HSL_INIT)

% Mass, inertial and aerodynamic data obtained from reference [1].

%

% 1. Weber, J.M. and Liu, T.Y. and Chung, W.

% "A Mathematical Simulation Model of the CH-47B Helicopter, Volumes 1 & 2"

% NASA-TM-84351-VOL-1/2, NASA Ames Research Center, Aug, 1984

% R.A. Stuckey 01/06/99 (c) 1999, Defence Science and Technology Organisation

% -----------------------------------------------------------------------------

if nargin<3, links = []; end

if nargin<2, inertia = []; end

if nargin<1, mass = []; end

% Set some defaults

if isempty(mass), mass = 33000/32.174; end

if isempty(inertia)

inertia = [ 34000 0 14900

0 202500 0

14900 0 191000 ];

end

D = struct(’Name’,[],’V’,[],’A’,[],’m’,[],’J’,[],’S’,[]);

D.Name = ’CH-47B’;

D.V = [ 0.1 20 40 60 80 100 120 130 ]’; % Trim airspeed (KTAS)

% Construct the aerodynamic coefficient matrix

D.A = zeros(8,10*6,2);

% SAS Off

%

% v = 0.1 KTAS

%

A = [

-1.99980e-002 -2.78070e-004 3.11490e-002 -5.32570e-004 1.10900e-002 7.34520e-004

-4.59450e-004 -1.07040e-001 4.00190e-003 -1.07710e-002 9.49780e-006 5.81320e-004

3.00850e-002 2.23380e-003 -2.98310e-001 3.99760e-004 6.38150e-004 4.24930e-005

4.26000e-002 -2.83620e+000 -1.25200e-001 -1.27950e+000 2.95300e-002 -1.48080e-002

2.78070e+000 -7.31250e-003 -2.64720e-001 8.71280e-002 -1.09730e+000 -1.33780e-001

-1.59040e-001 -3.30450e-001 -5.25060e-002 -9.02880e-002 -2.68610e-001 -8.91680e-002

5.70000e-002 -4.84860e-004 4.98650e-002 -3.46400e-002 3.28160e-001 5.40720e-002
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1.00060e-005 1.09170e+000 -7.62340e-005 4.86300e-001 7.42500e-006 9.74910e-003

-4.76460e-007 9.86840e-003 0.00000e+000 -1.26340e-001 0.00000e+000 1.92690e-001

9.81570e-001 6.56800e-002 -8.47370e+000 -1.70400e-002 -1.43180e-003 -5.52630e-004

]’; D.A(1,:,1) = A(:)’;

% v = 20.0 KTAS

%

A = [

-1.28440e-002 2.05350e-003 -4.05230e-002 3.66750e-004 1.55770e-002 9.33590e-004

1.43630e-004 -4.60310e-002 4.43150e-003 -8.76990e-003 -8.73300e-004 2.30440e-004

2.67660e-002 4.35330e-003 -2.82440e-001 8.33700e-004 1.66480e-002 7.13630e-004

2.76530e-002 -1.51220e+000 -1.05700e-001 -8.86220e-001 1.71360e-002 -5.86890e-003

2.89980e+000 -1.55240e-001 -2.77310e+000 2.38660e-002 -1.63390e+000 -1.51860e-001

-1.11160e-001 -2.01820e-001 1.76410e-001 -6.46980e-002 -2.47710e-001 -7.64320e-002

4.21820e-002 6.31740e-002 2.51680e-001 -1.04610e-002 3.35480e-001 5.25400e-002

9.33870e-005 1.08670e+000 -1.04440e-003 4.85580e-001 -2.16560e-005 8.61240e-003

-7.28990e-005 -7.71500e-003 1.22740e-003 -1.30970e-001 2.10380e-004 1.91730e-001

7.23840e-001 5.33870e-002 -8.45390e+000 -2.18100e-002 -8.30050e-003 2.06350e-003

]’; D.A(2,:,1) = A(:)’;

% v = 40.0 KTAS

%

A = [

-1.45080e-002 -4.56290e-004 -1.07970e-001 -2.78280e-004 7.31330e-004 2.52740e-004

7.12390e-004 -5.94030e-002 1.55100e-003 -8.99530e-003 -1.53180e-003 3.20370e-004

2.85410e-002 7.10780e-003 -3.49780e-001 2.74400e-003 2.58770e-002 2.49070e-005

2.60640e-002 -1.73850e+000 -9.39210e-002 -9.51320e-001 1.28110e-002 -4.82000e-003

2.80990e+000 -2.62180e-001 -3.29150e+000 -7.03350e-002 -1.76760e+000 -8.23200e-002

-9.15160e-002 -2.41250e-001 3.18470e-002 -8.39020e-002 -2.56190e-001 -6.83260e-002

3.53470e-002 1.07320e-001 6.49750e-001 1.62620e-002 3.74440e-001 3.69750e-002

3.09700e-005 1.08450e+000 -4.11670e-004 4.85580e-001 7.42500e-006 7.62330e-003

9.52930e-006 -2.32600e-002 1.90590e-004 -1.35310e-001 1.06420e-004 1.91260e-001

4.91350e-001 6.53500e-002 -7.96780e+000 -9.56590e-003 1.23530e-001 5.36610e-003

]’; D.A(3,:,1) = A(:)’;

% v = 60.0 KTAS

%

A = [

-8.90430e-003 -1.36390e-003 -7.54850e-002 -7.78620e-004 -7.26000e-003 2.75770e-004

4.56690e-004 -7.23000e-002 2.38840e-003 -9.29200e-003 -1.28440e-003 7.42330e-004

3.42780e-002 4.36120e-003 -5.63570e-001 2.04470e-003 1.45080e-002 -3.09370e-004

2.12800e-002 -1.97880e+000 -6.27030e-002 -1.02010e+000 1.99240e-002 -4.54600e-003

2.63080e+000 -1.34030e-001 6.40370e-001 -6.64380e-002 -1.58130e+000 -5.01390e-002

-6.99840e-002 -2.48750e-001 -1.80370e-001 -8.87950e-002 -2.73610e-001 -6.32470e-002

4.75450e-002 9.41300e-002 8.43060e-001 2.05270e-002 4.11840e-001 2.91390e-002

2.38230e-005 1.08520e+000 -3.58300e-004 4.86690e-001 1.48500e-005 6.29670e-003

9.52930e-006 -4.43990e-002 2.59200e-004 -1.41650e-001 1.04570e-004 1.91280e-001

3.27550e-001 6.33380e-002 -8.15050e+000 -1.81260e-003 2.33770e-001 4.56090e-003

]’; D.A(4,:,1) = A(:)’;

% v = 80.0 KTAS

%

A = [

-5.70700e-003 -8.59470e-004 2.30150e-002 -7.20310e-004 -8.07210e-003 2.93460e-004

-7.31440e-004 -8.77940e-002 4.89230e-003 -1.01780e-002 -7.76930e-004 1.34520e-003

4.27800e-002 2.40690e-003 -6.36790e-001 1.81170e-003 1.14460e-002 -5.56030e-004

2.05520e-002 -2.05910e+000 -5.30210e-002 -1.03580e+000 2.64380e-002 -1.17890e-002

2.63110e+000 -4.12240e-002 -4.07800e-001 -5.84190e-002 -1.65180e+000 -2.79330e-002
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-6.46630e-002 -2.44250e-001 -1.83310e-001 -8.63580e-002 -2.75520e-001 -6.21810e-002

4.99400e-002 6.90110e-002 7.23190e-001 1.81860e-002 4.30170e-001 2.50860e-002

4.24050e-005 1.08640e+000 -5.71760e-004 4.86460e-001 1.98000e-005 7.14560e-003

1.14350e-005 -3.10170e-002 2.28700e-004 -1.37820e-001 1.31180e-004 1.91540e-001

4.18550e-001 4.72800e-002 -9.34120e+000 -3.23580e-003 2.26040e-001 5.02230e-003

]’; D.A(5,:,1) = A(:)’;

% v = 100.0 KTAS

%

A = [

-1.26360e-002 -7.51370e-004 7.79880e-002 -6.59260e-004 -6.81070e-003 8.58610e-005

-1.35680e-003 -1.05140e-001 6.60610e-003 -1.12800e-002 -3.57580e-004 1.77010e-003

4.98200e-002 8.41670e-004 -6.76910e-001 1.32360e-003 1.16510e-002 -7.02930e-004

2.15280e-002 -2.00890e+000 -4.85800e-002 -1.01300e+000 3.20850e-002 -1.78010e-002

2.68250e+000 2.56190e-002 -5.28360e-001 -2.10030e-002 -1.70960e+000 -6.07910e-002

-6.49300e-002 -2.40140e-001 -1.80540e-001 -8.29250e-002 -2.83950e-001 -6.06080e-002

5.00190e-002 5.66120e-002 6.17770e-001 9.06130e-003 4.47050e-001 3.78660e-002

6.24170e-005 1.08910e+000 -7.85210e-004 4.86820e-001 1.36120e-005 7.83530e-003

1.04820e-005 -2.02930e-002 3.12560e-004 -1.34970e-001 1.52830e-004 1.92080e-001

4.89300e-001 5.72410e-002 -1.03410e+001 -9.66370e-003 1.99790e-001 8.24070e-003

]’; D.A(6,:,1) = A(:)’;

% v = 120.0 KTAS

%

A = [

-2.77000e-002 -1.34170e-004 6.30760e-002 -4.79240e-004 -4.14310e-003 8.77130e-005

-1.64920e-003 -1.23550e-001 8.15140e-003 -1.24840e-002 9.20080e-005 2.10200e-003

5.22720e-002 5.28050e-004 -7.00810e-001 1.12150e-003 1.20600e-002 -7.09630e-004

2.36600e-002 -1.86590e+000 -3.99660e-002 -9.61180e-001 3.89050e-002 -2.55800e-002

2.74400e+000 1.25820e-001 -4.73260e-001 2.85120e-003 -1.70350e+000 -6.41210e-002

-7.00630e-002 -2.03000e-001 -2.14120e-001 -6.99070e-002 -2.98380e-001 -6.68580e-002

5.27850e-002 3.37610e-002 5.10630e-001 4.49670e-003 4.51130e-001 4.12170e-002

-2.66820e-005 1.09580e+000 -8.69070e-004 4.88370e-001 8.04370e-006 8.50380e-003

-7.33760e-005 -1.02440e-002 1.67720e-004 -1.32770e-001 1.72630e-004 1.93300e-001

5.15320e-001 6.42760e-002 -1.09880e+001 -1.27980e-002 1.82350e-001 1.35210e-002

]’; D.A(7,:,1) = A(:)’;

% v = 130.0 KTAS

%

A = [

-3.78490e-002 2.51630e-004 1.32080e-002 -4.70110e-004 -2.21120e-003 -1.31000e-004

-1.78130e-003 -1.35140e-001 8.17960e-003 -1.31600e-002 2.78040e-004 2.27430e-003

4.26380e-002 2.86170e-003 -7.05780e-001 1.31020e-003 1.24230e-002 -6.89930e-004

2.47760e-002 -1.77710e+000 -3.57920e-002 -9.30250e-001 4.19650e-002 -2.93120e-002

2.76380e+000 1.67400e-001 -3.02350e-001 1.48530e-002 -1.67720e+000 -6.89040e-002

-7.88740e-002 -1.85370e-001 -2.56380e-001 -7.06540e-002 -3.08690e-001 -5.64850e-002

6.57840e-002 2.71970e-002 4.62770e-001 2.11230e-003 4.46010e-001 4.39730e-002

2.38230e-005 1.10660e+000 -3.58300e-004 4.91790e-001 6.80620e-006 8.25240e-003

1.76290e-005 -1.51530e-002 5.33640e-005 -1.35500e-001 7.92000e-005 1.95170e-001

3.55270e-001 5.92710e-002 -1.11430e+001 -1.47050e-002 1.91100e-001 1.50040e-002

]’; D.A(8,:,1) = A(:)’;

% SAS On

%

% v = 0.1 KTAS

%

A = [
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-2.00190e-002 -2.79300e-004 3.13430e-002 -5.33410e-004 1.10900e-002 7.34570e-004

-4.58720e-004 -1.07040e-001 3.99430e-003 -1.07860e-002 8.69340e-006 6.02580e-004

2.95890e-002 2.20110e-003 -2.93800e-001 3.92040e-004 6.48540e-004 4.01240e-005

4.26580e-002 -4.80530e+000 -1.25310e-001 -2.16340e+000 2.95170e-002 -2.27710e-002

2.76530e+000 -8.48820e-003 -1.16850e-001 8.65030e-002 -1.09920e+000 -1.33820e-001

-1.59080e-001 -3.54870e-001 -5.24300e-002 5.98430e-002 -2.68650e-001 -3.23810e-001

5.69980e-002 -4.73250e-004 4.98950e-002 -3.46380e-002 3.28170e-001 5.40740e-002

-4.76460e-007 1.09170e+000 0.00000e+000 4.86300e-001 6.18750e-007 9.74810e-003

0.00000e+000 9.87340e-003 -7.62340e-006 -1.26340e-001 6.18750e-007 1.92690e-001

9.82140e-001 6.57510e-002 -8.47890e+000 -1.70130e-002 -1.43490e-003 -5.47820e-004

]’; D.A(1,:,2) = A(:)’;

% v = 20.0 KTAS

%

A = [

-1.28450e-002 2.05360e-003 -4.05190e-002 3.68320e-004 1.55760e-002 9.31240e-004

1.43680e-004 -4.69260e-002 4.44410e-003 -1.19320e-002 -8.70520e-004 4.54010e-003

2.67660e-002 4.35350e-003 -2.82440e-001 8.35320e-004 1.66470e-002 7.11290e-004

2.73040e-002 -3.47460e+000 -1.00800e-001 -1.76990e+000 1.76080e-002 -1.10830e-002

2.90000e+000 -1.55300e-001 -2.77560e+000 2.38450e-002 -1.63400e+000 -1.51840e-001

-1.11040e-001 -1.93430e-001 1.74270e-001 9.46100e-002 -2.47990e-001 -3.10110e-001

4.22050e-002 6.31900e-002 2.51470e-001 -1.04580e-002 3.35490e-001 5.25420e-002

-1.95350e-005 1.08670e+000 2.82070e-004 4.85580e-001 5.07370e-005 8.61630e-003

-8.67170e-005 -7.72250e-003 1.15880e-003 -1.30970e-001 1.16320e-004 1.91730e-001

7.23850e-001 5.34030e-002 -8.45410e+000 -2.18080e-002 -8.30980e-003 2.06790e-003

]’; D.A(2,:,2) = A(:)’;

% v = 40.0 KTAS

%

A = [

-1.42800e-002 2.09760e-004 -1.04060e-001 -1.66880e-004 3.02760e-003 4.71550e-004

7.12670e-004 -6.16240e-002 1.55750e-003 -1.53840e-002 -1.52910e-003 8.83450e-003

2.85590e-002 7.19340e-003 -3.49160e-001 2.75790e-003 2.61800e-002 5.38230e-005

2.59480e-002 -3.69780e+000 -9.25870e-002 -1.83520e+000 1.27460e-002 -8.27830e-003

2.80990e+000 -2.62190e-001 -3.29140e+000 -7.03380e-002 -1.76760e+000 -8.23200e-002

-9.15410e-002 -2.41250e-001 3.20760e-002 -8.39040e-002 -2.56190e-001 -6.83270e-002

3.53760e-002 1.07330e-001 6.49480e-001 1.62660e-002 3.74470e-001 3.69740e-002

3.38290e-005 1.08450e+000 -4.11670e-004 4.85580e-001 1.67060e-005 7.62280e-003

7.62340e-006 -2.32630e-002 1.90590e-004 -1.35310e-001 1.01470e-004 1.91260e-001

4.91340e-001 6.53570e-002 -7.96770e+000 -9.56410e-003 1.23540e-001 5.36710e-003

]’; D.A(3,:,2) = A(:)’;

% v = 60.0 KTAS

%

A = [

-8.27460e-003 -4.85040e-005 -6.34290e-002 -4.90270e-004 -1.49840e-003 6.84190e-004

4.55900e-004 -7.65220e-002 2.40440e-003 -1.89950e-002 -1.27800e-003 1.33160e-002

3.43190e-002 4.43620e-003 -5.62920e-001 2.06160e-003 1.48370e-002 -2.86400e-004

2.11980e-002 -3.94060e+000 -6.09110e-002 -1.90630e+000 2.00350e-002 -5.59910e-003

2.63080e+000 -1.33990e-001 -6.40410e-001 -6.64230e-002 -1.58130e+000 -5.01410e-002

-6.99690e-002 -2.48740e-001 -1.80520e-001 -8.87900e-002 -2.73610e-001 -6.32470e-002

4.75450e-002 9.41200e-002 8.43140e-001 2.05240e-002 4.11830e-001 2.91370e-002

1.90590e-005 1.08520e+000 -3.88800e-004 4.86690e-001 4.33130e-006 6.29400e-003

1.28650e-005 -4.44340e-002 1.82960e-004 -1.41660e-001 1.03330e-004 1.91280e-001

3.27530e-001 6.33311e-002 -8.15030e+000 -1.81280e-003 2.33750e-001 4.55900e-003

]’; D.A(4,:,2) = A(:)’;

% v = 80.0 KTAS
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%

A = [

-5.01240e-003 1.05650e-004 3.32200e-002 -4.69290e-004 -2.04460e-003 6.48800e-004

-7.36350e-004 -8.98880e-002 4.92400e-003 -1.68720e-002 -7.82160e-004 1.03840e-002

4.28110e-002 2.45010e-003 -6.36340e-001 1.82300e-003 1.17170e-002 -5.37880e-004

2.05250e-002 -4.02230e+000 -5.29830e-002 -1.92140e+000 2.64020e-002 -1.43840e-002

2.63120e+000 -4.12660e-002 -4.07570e-001 -5.84350e-002 -1.65180e+000 -2.79310e-002

-6.46790e-002 -2.44270e-001 -1.83170e-001 -8.63610e-002 -2.75610e-001 -6.21850e-002

4.99380e-002 6.90080e-002 7.23020e-001 1.81850e-002 4.30170e-001 2.50850e-002

4.19290e-005 1.08640e+000 -5.94630e-004 4.86460e-001 8.04370e-006 7.14940e-003

1.71530e-005 -3.09520e-002 1.82960e-004 -1.37800e-001 1.31790e-004 1.91540e-001

4.18540e-001 4.72930e-002 -9.34120e+000 -3.23290e-003 2.26060e-001 5.02440e-003

]’; D.A(5,:,2) = A(:)’;

% v = 100.0 KTAS

%

A = [

-1.21400e-002 -2.12260e-004 8.45320e-002 -5.70060e-004 -2.20040e-003 4.79490e-004

-1.35350e-003 -1.06330e-001 6.61450e-003 -1.68210e-002 -3.52720e-004 9.49190e-003

4.98460e-002 8.65710e-004 -6.76670e-001 1.32940e-003 1.18410e-012 -6.89160e-004

2.15560e-002 -3.97640e+000 -4.71510e-002 -1.89920e+000 3.21750e-002 -2.15830e-002

2.68240e+000 2.56070e-002 -5.22640e-001 -2.10470e-002 -1.70950e+000 -6.07840e-002

-6.49100e-002 -2.40130e-001 -1.80540e-001 -8.29660e-002 -2.84000e-001 -6.06040e-002

5.00630e-002 5.66060e-002 6.18090e-001 9.06090e-003 4.47080e-001 3.78660e-002

5.47930e-005 1.08910e+000 -7.16600e-004 4.86810e-001 1.67060e-005 7.83420e-003

1.66760e-005 -2.03130e-002 2.97310e-004 -1.34970e-001 1.77580e-004 1.92080e-001

4.89350e-001 5.72900e-002 -1.03410e+001 -9.64680e-003 1.99830e-001 8.24110e-003

]’; D.A(6,:,2) = A(:)’;

% v = 120.0 KTAS

%

A = [

-2.72310e-002 1.60600e-004 6.76800e-002 -4.40090e-004 -1.53330e-004 4.51540e-004

-1.64710e-003 -1.24180e-001 7.99580e-003 -1.74270e-002 1.00270e-004 9.18990e-003

5.22970e-002 5.26710e-004 -7.00690e-001 1.12160e-003 1.21910e-002 -7.00720e-004

2.33190e-002 -3.84480e+000 -3.88800e-002 -1.84990e+000 3.86730e-002 -3.06020e-002

2.74360e+000 1.11460e-001 -4.81120e-001 2.34480e-003 -1.70360e+000 -6.39660e-002

-6.97970e-002 -2.02890e-001 -2.21880e-001 -6.98590e-002 -2.98370e-001 -6.68540e-002

5.26670e-002 3.35910e-002 5.13600e-001 4.45150e-003 4.51180e-001 4.11780e-002

6.76580e-005 1.09570e+000 -8.30950e-004 4.88340e-001 9.28120e-006 8.50630e-003

2.14410e-005 -1.01920e-002 1.52470e-004 -1.32750e-001 1.75720e-004 1.93290e-001

5.15400e-001 6.40920e-002 -1.09850e+001 -1.28180e-002 1.82370e-001 1.34750e-002

]’; D.A(7,:,2) = A(:)’;

% v = 130.0 KTAS

%

A = [

-3.72690e-002 4.92160e-004 1.74470e-002 -4.51350e-004 1.73700e-003 2.56790e-004

-1.78010e-003 -1.35900e-001 8.34420e-003 -1.80350e-002 2.81930e-004 9.20090e-003

4.26400e-002 2.85720e-003 -7.05740e-001 1.30860e-003 1.24690e-002 -6.85800e-004

2.47090e-002 -3.77600e+000 -3.51820e-002 -1.82540e+000 4.20970e-002 -3.36860e-002

2.76380e+000 1.67250e-001 -3.02540e-001 1.47950e-002 -1.67700e+000 -6.88860e-002

-7.88690e-002 -1.85400e-001 -2.56340e-001 -7.06680e-002 -3.08690e-001 -5.64830e-002

6.57720e-002 2.72330e-002 4.62820e-001 2.12550e-003 4.46080e-001 4.39700e-002

3.85940e-005 1.10660e+000 -5.26020e-004 4.91790e-001 1.29940e-005 8.25660e-003

1.76290e-005 -1.51090e-002 2.28700e-005 -1.35490e-001 8.78620e-005 1.95170e-001

3.55260e-001 5.91680e-002 -1.11430e+001 -1.47390e-002 1.91010e-001 1.50090e-002

]’; D.A(8,:,2) = A(:)’;
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D.m = mass; % Mass (slugs)

D.J = inertia; % Inertia matrix (slugs.ft^2)

% Construct the geometric struct

D.S = struct(’Patches’,[],’Lines’,[],’Links’,[]);

D.S.Patches.Data = [

27.57681 1.60769 4.56059

23.11464 4.75745 6.95572

23.11464 4.75745 -2.49356

-25.42775 4.75745 -2.49356

-13.96066 6.69324 6.89010

-13.96066 -6.69324 6.89010

-25.42775 -4.75745 -2.49356

23.11464 -4.75745 -2.49356

23.11464 -4.75745 6.95572

27.57681 -1.60769 4.56059

23.11464 1.27959 -2.46075

23.11464 1.27959 -4.79026

15.73240 1.27959 -4.42935

15.73240 1.27959 -2.46075

15.73240 -1.27959 -2.46075

15.73240 -1.27959 -4.42935

23.11464 -1.27959 -4.79026

23.11464 -1.27959 -2.46075

-8.21890 1.27959 -2.46075

-10.41718 1.27959 -8.30093

-25.08325 1.27959 -9.58052

-25.42775 1.27959 -2.46075

-25.42775 -1.27959 -2.46075

-25.08325 -1.27959 -9.58052

-10.41718 -1.27959 -8.30093

-8.21890 -1.27959 -2.46075

];

D.S.Patches.CoordIndex = [

0 1 2 2 -1 ...

1 2 3 4 -1 ...

3 4 5 6 -1 ...

5 6 7 8 -1 ...

7 8 9 9 -1 ...

1 4 5 8 -1 ...

0 1 8 9 -1 ...

0 2 7 9 -1 ...

2 3 6 7 -1 ...

10 11 12 13 -1 ...

12 13 14 15 -1 ...

14 15 16 17 -1 ...

10 11 16 17 -1 ...

11 12 15 16 -1 ...

18 19 20 21 -1 ...

20 21 22 23 -1 ...

22 23 24 25 -1 ...
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18 19 24 25 -1 ...

19 20 23 24 -1

];

D.S.Lines.Data = [

51.47889 0.00000 -7.64473

47.46121 14.99417 -7.64473

36.48472 25.97066 -7.64473

21.49055 29.98834 -7.64473

6.49638 25.97066 -7.64473

-4.48011 14.99417 -7.64473

-8.49779 0.00000 -7.64473

-4.48011 -14.99417 -7.64473

6.49638 -25.97066 -7.64473

21.49055 -29.98834 -7.64473

36.48472 -25.97066 -7.64473

47.46121 -14.99417 -7.64473

51.47889 -0.00000 -7.64473

NaN NaN NaN

10.30234 0.00000 -13.22243

6.28466 14.99417 -13.22243

-4.69183 25.97066 -13.22243

-19.68600 29.98834 -13.22243

-34.68017 25.97066 -13.22243

-45.65666 14.99417 -13.22243

-49.67434 0.00000 -13.22243

-45.65666 -14.99417 -13.22243

-34.68017 -25.97066 -13.22243

-19.68600 -29.98834 -13.22243

-4.69183 -25.97066 -13.22243

6.28466 -14.99417 -13.22243

10.30234 -0.00000 -13.22243

];

D.S.Links.Data = [

5.91000 0.00000 6.89000

0.00000 0.00000 6.89000

-7.42000 0.00000 6.89000

];

if ~isempty(links), D.S.Links.Data = links; end

HSL BOXDAT.M

function D = hsl_boxdat(mass,inertia,links,config,bsize)

% HSL_BOXDAT : Box Container aerodynamic, mass, inertial and geometric data

%

% DAT = HSL_BOXDAT((mass)(,inertia)(,links)(,config)(,bsize))

%

% mass : Load mass (slugs)

% inertia : Inertia matrix (slug.ft^2)

% links : Links data matrix (see HSL_INIT)

% config : Sling configuration string [’single’|’multiple’]

% bsize : Box size [x,y,z] (ft)

%
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% DAT : Data structure (see HSL_INIT)

% R.A. Stuckey 01/06/99 (c) 1999, Defence Science and Technology Organisation

% -----------------------------------------------------------------------------

if nargin<5, bsize = []; end

if nargin<4, config = []; end

if nargin<3, links = []; end

if nargin<2, inertia = []; end

if nargin<1, mass = []; end

% Set some defaults

if isempty(mass), mass = 1000/32.174; end

if isempty(inertia), inertia = diag([ 0.33 1.20 1.20 ]*mass*32.174); end

if isempty(bsize), bsize = [ 6.0 6.0 6.0 ]; end

if isempty(config), config = ’multiple’; end

D = struct(’Name’,[],’V’,[],’A’,[],’m’,[],’J’,[],’S’,[]);

D.Name = ’BOX’;

D.V = [ 0.0 ]; % Trim airspeed (KTAS)

% Construct the aerodynamic coefficient matrix

D.A = zeros(1,10*6,1);

% v = 0.0 KTAS

%

A = [

0.00000e+000 0.00000e+000 0.00000e+000 0.00000e+000 0.00000e+000 0.00000e+000

0.00000e+000 0.00000e+000 0.00000e+000 0.00000e+000 0.00000e+000 0.00000e+000

0.00000e+000 0.00000e+000 0.00000e+000 0.00000e+000 0.00000e+000 0.00000e+000

0.00000e+000 0.00000e+000 0.00000e+000 0.00000e+000 0.00000e+000 0.00000e+000

0.00000e+000 0.00000e+000 0.00000e+000 0.00000e+000 0.00000e+000 0.00000e+000

0.00000e+000 0.00000e+000 0.00000e+000 0.00000e+000 0.00000e+000 0.00000e+000

0.00000e+000 0.00000e+000 0.00000e+000 0.00000e+000 0.00000e+000 0.00000e+000

0.00000e+000 0.00000e+000 0.00000e+000 0.00000e+000 0.00000e+000 0.00000e+000

0.00000e+000 0.00000e+000 0.00000e+000 0.00000e+000 0.00000e+000 0.00000e+000

0.00000e+000 0.00000e+000 0.00000e+000 0.00000e+000 0.00000e+000 0.00000e+000

]’; D.A(1,:,1) = A(:)’;

D.m = mass; % Mass (slugs)

D.J = inertia; % Inertia matrix (slugs.ft^2)

% Construct the geometric struct

D.S = struct(’Patches’,[],’Lines’,[],’Links’,[]);

D.S.Patches.Data = [

1 1 1

1 1 -1

-1 1 -1

-1 1 1

-1 -1 1

-1 -1 -1
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1 -1 -1

1 -1 1

]*diag(bsize/2);

D.S.Patches.CoordIndex = [

0 1 2 3 -1 ...

2 3 4 5 -1 ...

4 5 6 7 -1 ...

1 2 5 6 -1 ...

0 1 6 7 -1 ...

0 3 4 7 -1

];

if strcmpi(config,’single’)

D.S.Lines.Data = [

1 1 -1

0 0 -1

NaN NaN NaN

1 -1 -1

0 0 -1

NaN NaN NaN

-1 1 -1

0 0 -1

NaN NaN NaN

-1 -1 -1

0 0 -1

NaN NaN NaN

]*diag(bsize/2);

D.S.Links.Data = [

0 0 -1

]*diag(bsize.*[ 0.0 0.0 1.0 ]);

if ~isempty(links)

if (length(links) == 1)

D.S.Links.Data(3) = links;

else

D.S.Links.Data = links;

end

end

D.S.Lines.Data([2,5,8,11],:) = ones(4,1)*D.S.Links.Data;

elseif strcmpi(config,’multiple’)

D.S.Lines.Data = [];

D.S.Links.Data = [

1 1 -1

-1 1 -1

-1 -1 -1

1 -1 -1

]*diag(bsize.*[ 0.5 0.5 0.5 ]);

if ~isempty(links), D.S.Links.Data = links; end

end
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HSL LOAD.M

function r = hsl_load(r,acj)

% HSL_LOAD : Calculate load positions from the helicopter positions, the

% helicopter and load attitudes and the cable lengths & orientation

%

% r = HSL_LOAD(r(,acj))

%

% r : Configuration position vector

% = [ R1*_N ; R2*_N ; ... ; Rn*_N

% a1 ; a2 ; ... ; an ]

% acj : Cable-angle matrix : Single-cable case only

% = [ [ 0 0 0 ]’ ac2 ... acn ]

%

% The sub-vectors are defined:

% . . .

% R1*_N : helicopter [x,y,z] position vector in inertial axes

% Rj*_N : load [x,y,z] position vector in inertial axes

% a1 : helicopter [phi,theta,psi] Euler angular position vector

% aj : load [phi,theta,psi] Euler angular position vector

%

% acj : cable/cg-line [phi,theta,psi] angles in cable-axes

%

% See HSL_INIT for more information

% R.A. Stuckey 01/10/97 (c) 1997, Defence Science and Technology Organisation

% -----------------------------------------------------------------------------

global HDAT_ LDAT_ CDAT_

n = length(LDAT_); n = n+(~n);

if nargin<2, acj = zeros(n,3); end

% Create some transformation matrices

T_jN = zeros(3,3,n); T_cjN = NaN*ones(3,3,n);

T_jN(:,:,1) = euler(r(n*3+[1:3]));

% Determine sling configuration

mj = zeros(1,n);

MultipleCables = NaN; SingleCable = NaN;

for j = 2:n

mj(j) = length(CDAT_(j).l0);

MultipleCables(j) = (mj(j)>2) & (~any(diff(sort(CDAT_(j).i(1,:)))));

SingleCable(j) = (mj(j)==1);

end

% Calculate the load positions

for j = 2:n

jj = (j-1)*3+[1:3];
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T_jN(:,:,j) = euler(r(n*3+jj)); % Load-axes transformation

toplinks = HDAT_.S.Links.Data(CDAT_(j).i(1,:),:);

botlinks = LDAT_(j).S.Links.Data(CDAT_(j).i(2,:),:);

if MultipleCables(j)

if any(diff(CDAT_(j).l))

error(’ Cable lengths must be equal !’)

end

% Calculate load length (x) and width (y)

Ri1i4_j = diff(botlinks([4,1],:))’; b = sqrt(sum(Ri1i4_j.^2));

Ri1i2_j = diff(botlinks([2,1],:))’; c = sqrt(sum(Ri1i2_j.^2));

% Calculate distance from load cg to helicopter attachment point

zl = sqrt(CDAT_(j).l(1)^2-(b/2)^2-(c/2)^2)-botlinks(1,3);

% Update the (load) position vector

r(jj) = r(1:3) ...

+T_jN(:,:,1)’*toplinks(1,:)’ ...

+T_jN(:,:,j)’*[ 0 0 zl ]’;

elseif SingleCable(j)

T_cjN(:,:,j) = euler(acj(:,j)); % Cable-axes transformation

% Update the (load) position vector

r(jj) = r(1:3) ...

+T_jN(:,:,1)’*toplinks’ ...

+T_cjN(:,:,j)’*[ 0 0 CDAT_(j).l ]’ ...

-T_jN(:,:,j)’*botlinks’;

end

end

HSLSIM.M

% HSLSIM : Helicopter Slung-Load dynamic Simulation

%

% HSLSIM

%

% Inputs:

%

% opt_ : GLOBAL options cell array [4x1]

% HDAT_ : GLOBAL helicopter struct

% LDAT_ : GLOBAL loads struct array [1xn]

% CDAT_ : GLOBAL loads struct array [1xn]

% n : Number of bodies

% t : Time vector [Nx1]

% TD : Time & control input matrix [Nx5]

% D : System mass/inertia matrix [n*6xn*6]

% x0 : Trim state vector [n*6x1]
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% x : Initial state vector [n*6x1]

%

% Outputs:

%

% U : Generalised velocity coordinate matrix [Nxn*6]

% R : Configuration position coordinate matrix using Euler angles [Nxn*6]

% R_q : Configuration position coordinate matrix using quaternions [Nxn*7]

% X : Full state variable matrix using Euler angles [Nxn*12]

% X_q : Full state variable matrix using quaternions [Nxn*13]

%

% See HSL_INIT for more information

% R.A. Stuckey 01/10/97 (c) 1997, Defence Science and Technology Organisation

% -----------------------------------------------------------------------------

global HDAT_ LDAT_ CDAT_ opt_

% Check input variables and set defaults

if length(opt_)<4

{’combined’,’euler’,0,1};

for i = length(opt_)+1:4

opt_{i} = ans{i};

warning([’ Using opt_{’,int2str(i),’} = ’,opt_{i}])

end

end

if (~strncmpi(opt_{1},’longitudinal’,length(opt_{1}))) ...

& (~strncmpi(opt_{1},’lateral’,length(opt_{1}))) ...

& (~strncmpi(opt_{1},’combined’,length(opt_{1})))

error(’ Option, opt_{1} = ’,opt_{1},’ not recognised !’)

end

opt_2 = strncmpi(opt_{2},’quaternion’,length(opt_{2})); o2 = opt_2+3;

if (~opt_2)&(~strncmpi(opt_{2},’euler’,length(opt_{2})))

error(’ Option, opt_{2} = ’,opt_{2},’ not recognised !’)

end

if ~any(opt_{3}==[0,1])

error(’ Option, opt_{3} = ’,int2str(opt_{3}),’ not recognised !’)

end

if opt_{3}

for j = 2:n

if isempty(CDAT_(j).K)

error(’ Empty stiffness/damping matrix, CDAT_(’,int2str(j),’).K !’)

end

end

end

if ~any(opt_{4}==[0,1])

error(’ Option, opt{4} = ’,int2str(opt_{4}),’ not recognised !’)

end

if (~opt_{4})&(~exist(’control’,’dir’))

error(’ Linear simulation requires CONTROL SYSTEM TOOLBOX !’)

end

% Determine sling configuration
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mj = zeros(1,n);

MultipleCables = NaN; SingleCable = NaN;

for j = 2:n

mj(j) = length(CDAT_(j).l0);

MultipleCables(j) = (mj(j)>2) & (~any(diff(sort(CDAT_(j).i(1,:)))));

SingleCable(j) = (mj(j)==1);

end

% Construct inverse mass/inertia matrix

finD = isfinite(diag(D)); finDn = find(finD);

diag(inf*ones(1,n*6)); ans(finDn,finDn) = D(finDn,finDn); D = ans;

zeros(n*6); ans(finDn,finDn) = inv(D(finDn,finDn)); Di = ans;

% Determine trim configuration velocities

[xdot0,va0] = hsl_fun(0,zeros(n*12,1),[],D,Di,x0,zeros(n*6,1),zeros(1,5));

% Set initial, perturbed state from trim

if ~opt_2

dx = x-x0;

else

x0_q = [x0(1:n*9);zeros(n*4,1)]; x_q = [x(1:n*9);zeros(n*4,1)];

for j = 1:n

x0_q(n*9+(j-1)*4+[1:4]) = e2q1(x0(n*9+(j-1)*3+[1:3]));

x_q(n*9+(j-1)*4+[1:4]) = e2q1(x(n*9+(j-1)*3+[1:3]));

end

dx_q = x_q-x0_q;

end

% Run the simulation

if opt_{4}==1 % Nonlinear simulation:

% Uses 4/5th order R-K integration routine with fixed step-size

options = odeset;

if ~opt_2 % Euler representation

[t,dX] = ode45f(’hsl_fun’,t,dx,options, D,Di,x0,va0,TD);

else % Quaternion representation

[t,dX_q] = ode45f(’hsl_fun’,t,dx_q,options, D,Di,x0_q,va0,TD);

end

else % Linear simulation:

% Uses linear time-invariant time response kernel

if ~opt_2 % Euler representation

del = 1e-3*ones(n*12,1); %%% DELTA FOR JACOBIAN COMPUTATION

dx0 = zeros(n*12,1);

% Compute the state and control jacobian matrices

fac = []; vec = []; del = 1e-3*ones(n*12,1);

DFDY = numjac(’hsl_fun’,0,dx0,fty,del,fac,vec,[],[],[], D,Di,x0,va0,zeros(1,5));
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del = 1e-3*ones(4,1); %%% DELTA

ydel = diag(del); fdel = zeros(n*12,4);

for j = 1:4

fdel(:,j) = hsl_fun(0,dx0,[], D,Di,x0,va0,[0,ydel(:,j)’]);

end

DFDD = (fdel-fty(:,ones(1,4)))*diag(1 ./del);

% Convert linear system from continuous to discrete

sys = ss(DFDY,DFDD,eye(n*12),zeros(n*12,4));

sysd = c2d(sys,t(2)-t(1),’foh’);

% Implement any initial velocities and perform the simulation

r0dot = [v0(1:n*3);zeros(n*3,1)];

for j = 1:n

Wij_j = eratesi(x0(n*9+(j-1)*3+[1:3]));

r0dot(n*3+(j-1)*3+[1:3]) = Wij_j*v0(n*3+(j-1)*3+[1:3]);

end

dX = lsim(sysd,TD(:,2:5),t,dx)+t*[zeros(1,n*6),r0dot’];

else % Quaternion representation

del = 1e-3*ones(n*13,1); %%% DELTA FOR JACOBIAN COMPUTATION

dx0_q = zeros(n*13,1);

% Compute the state and control jacobian matrices

fac = []; vec = []; del = 1e-3*ones(n*12,1);

DFDY = numjac(’hsl_fun’,0,dx0_q,fty,del,fac,vec,[],[],[], D,Di,x0_q,va0,zeros(1,5));

del = 1e-3*ones(4,1); %%% DELTA

ydel = diag(del); fdel = zeros(n*13,4);

for j = 1:4

fdel(:,j) = hsl_fun(0,dx0,[], D,Di,x0,va0,[0,ydel(:,j)’]);

end

DFDD = (fdel-fty(:,ones(1,4)))*diag(1 ./del);

% Convert linear system from continuous to discrete

sys = ss(DFDY,DFDD,eye(n*13),zeros(n*13,4));

sysd = c2d(sys,t(2)-t(1),’foh’);

% Implement any initial velocities and perform the simulation

r0dot_q = [v0(1:n*3);zeros(n*4,1)];

for j = 1:n

Wij_j = qratesi(x0_q(n*9+(j-1)*4+[1:4]));

r0dot_q(n*3+(j-1)*4+[1:4]) = Wij_j*v0(n*3+(j-1)*3+[1:3]);

end

dX_q = lsim(sysd,TD(:,2:5),t,dx_q)+t*[zeros(1,n*6),r0dot_q’];

end

end

% Create the full state variable matrices
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if ~opt_2 % Euler representation

% Detect and remove erroneous (divergent) observations from the simulation

isdiv = (sign(abs(imag(dX)))|isinf(dX)|isnan(dX));

if any(any(isdiv))

warning(’Divergent solution !’)

N = min(find(sum(isdiv,2)))-1; dX = dX(1:N,:);

else

N = size(dX,1);

end

t = t(1:N); TD = TD(1:N,:);

% Add initial state to perturbed state and calculate quaternions

X = dX+ones(N,1)*x0’; R = X(:,n*6+[1:n*6]);

U = X(:,1:n*6); R_q = [R(:,1:n*3),zeros(N,n*3)];

for j = 1:n

R_q(:,n*3+(j-1)*4+[1:4]) = e2q(R(:,n*3+(j-1)*3+[1:3]));

end

X_q = [U,R_q];

else % Quaternion representation

% Detect and remove erroneous (divergent) observations from the simulation

isdiv = (sign(abs(imag(dX_q)))|isinf(dX_q)|isnan(dX_q));

if any(any(isdiv))

warning(’Divergent solution !’)

N = min(find(sum(isdiv,2)))-1; dX_q = dX_q(1:N,:);

else

N = size(dX_q,1);

end

t = t(1:N); TD = TD(1:N,:);

% Add initial state to perturbed state and calculate Euler angles

X_q = dX_q+ones(N,1)*x0_q’; R_q = X_q(:,n*6+[1:n*7]);

U = X_q(:,1:n*6); R = [R_q(:,1:n*3),zeros(N,n*4)];

for j = 1:n

R(:,n*3+(j-1)*3+[1:3]) = q2e(R_q(:,n*3+(j-1)*4+[1:4]));

end

X = [U,R];

end

% Compute body-axes velocities, cable angles and internal cable forces

Va = zeros(N,n*6); Vadot = zeros(N,n*6); TDD = zeros(N,5);

if n>1

Acj = zeros(N,(n-1)*3); FC = zeros(N,n-1);

end

for i = 1:N % Evaluation loop (no integration)

% Call the function with all output arguments
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if ~opt_2 % Euler representation

[xdot,va,vadot,acj,fc,d] = hsl_fun(t(i),dX(i,:)’,[],D,Di,x0,va0,TD);

else % Quaternion representation

[xdot_q,va,vadot,acj,fc,d] = hsl_fun(t(i),dX_q(i,:)’,[],D,Di,x0_q,va0,TD);

end

% Insert the variables into their respective observation matrices

Va(i,:) = va’; Vadot(i,:) = vadot’;

if n>1

squeeze(acj(:,1,2:n)); Acj(i,:) = ans(:)’;

FC(i,:) = (fc./diag(D([2:n]*3,[2:n]*3))/32.174)’;

end

TDD(i,:) = [t(i),d’];

end

ODE45F.M

function [T,Y,Yd] = ode45f(odefile,T,y0,options,varargin)

% ODE45F : Solve differential equations - higher order method

%

% [T,Y,Yd] = ODE45F(’F’,T,y0,options(,varargin))

%

% F : String containing the name of the ODE function

%

% where yd = F(t,y)

%

% T : Time vector [Nx1]

% y0 : Initial conditions [nx1]

%

% Y : Solution matrix [Nxn]

% Yd : Differential matrix [Nxn]

%

% See ODE45, ODE

% Modified from ODE45.M:

%

% C.B. Moler, 3-25-87, 8-26-91, 9-08-92.

% Copyright (c) 1984-94 by The MathWorks, Inc.

% R.A. Stuckey 10/12/97 (c) 1997, Defence Science and Technology Organisation

% -----------------------------------------------------------------------------

% Initialise the integration parameters and matrices

alf=[ 1/4 3/8 12/13 1 1/2 ]’;

bet=[ [ 1 0 0 0 0 0 ]/4

[ 3 9 0 0 0 0 ]/32

[ 1932 -7200 7296 0 0 0 ]/2197

[ 8341 -32832 29440 -845 0 0 ]/4104

[ -6080 41040 -28352 9295 -5643 0 ]/20520 ];

gam=[ [ 902880 0 3953664 3855735 -1371249 277020 ]/7618050

[ -2090 0 22528 21970 -15048 -27360 ]/752400 ];
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T = T(:);

N = size(T,1); ny = size(y0,1); Nb = size(bet);

H = diff(T); f = zeros(ny,Nb(2)); Y = zeros(N,ny); Yd = Y;

Y(1,:) = y0’;

% Set the output function

if isempty(options)

outfun = ’’;

else

outfun = odeget(options,’OutputFcn’);

end

if ~isempty(outfun)

feval(outfun,T([1,N]),y0,’init’);

end

for n = 1:N-1 % The main loop ...

% Compute the slopes

f(:,1) = feval(odefile,T(n),Y(n,:)’,[],varargin{:});

Yd(n,:) = f(:,1)’;

for j = 1:Nb(1)

f(:,j+1) = feval(odefile,T(n)+H(n)*alf(j),Y(n,:)’+H(n)*f*bet(j,:)’,[],varargin{:});

end

% Estimate the error

%

% delta = norm(H(n)*f*gam(2,:)’,’inf’);

% Update the solution

Y(n+1,:) = Y(n,:)+H(n)*gam(1,:)*f’;

% Check the status of the output function

if ~isempty(outfun)

status = feval(outfun,T(n+1),Y(n+1,:));

if status, break, end

end

end

% Evaluate the last time point and truncate output matrices if necessary

Yd(n+1,:) = feval(odefile,T(n+1),Y(n+1,:)’,[],varargin{:})’;

N = n+1; T = T(1:N); Y = Y(1:N,:); Yd = Yd(1:N,:);

% Set the output status

if ~isempty(outfun)
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feval(outfun,[],[],’done’);

end

HSL FUN.M

function [xdot,va,vadot,acj,Fc,d] = hsl_fun(t,dx,FLAG,D,Di,x0,va0,TD)

% HSL_FUN : ODE function for helicopter slung-load system

%

% [xdot,va,vadot,acj,Fc,d] = HSL_FUN(t,dx,FLAG,D,Di,x0,va0,TD)

%

% t : Current time variable

% dx : Current perturbed state vector [n*6x1]

% FLAG : String with the type of information to return *NOT USED*

% D : System mass/inertia matrix [n*6xn*6]

% Di : Inverse system mass/inertia matrix [n*6xn*6]

% x0 : Trim state vector [n*6x1]

% va0 : Trim body-axes velocity vector [n*6x1]

% TD : Time & control input matrix [Nx5]

%

% xdot : Current state rate vector [n*6x1]

% va : Current body-axes velocity vector [n*6x1]

% vadot : Current body-axes acceleration vector [n*6x1]

% acj : Cable angle matrix [3x4xn]

% Fc : Internal cable force vector [n-1x1]

% d : Current control input vector [4x1]

%

% See HSLSIM for details

% R.A. Stuckey 01/10/97 (c) 1997, Defence Science and Technology Organisation

% -----------------------------------------------------------------------------

global HDAT_ LDAT_ CDAT_ opt_ tdd_ vadot_ rdot_

n = length(LDAT_); n = n+(~n); nx = length(x0);

opt_2 = (nx==n*13); o2 = opt_2+3;

% Early exit if dx is in err

if (~isreal(dx)|any(isinf(dx)|isnan(dx)))

xdot = dx; return

end

% Define some strings for FEVAL function evaluation, below

if opt_2

anglestr = ’quaternion’; ratesstr = ’qratesi’;

else

anglestr = ’euler’; ratesstr = ’eratesi’;

end

% Determine axes to be used in solution (the sub-space)

if strncmpi(opt_{1},’longitudinal’,length(opt_{1}))

% For n=2, ans = [1,3,8,4,6,11]; nsys = [ans,ans+12];
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[1,3,n*3+2,n*6+[1,3]]’*ones(1,n)+ones(5,1)*[0:n-1]*3; nsys = ans(:)’;

if opt_2

[n*9+[1,3]]’*ones(1,n)+ones(2,1)*[0:n-1]*4;

else

[n*9+[2]]’*ones(1,n)+ones(1,1)*[0:n-1]*3;

end

nsys = [nsys,ans(:)’];

elseif strncmpi(opt_{1},’lateral’,length(opt_{1}))

% For n=2, ans = [2,7,9,5,6,10,12]; nsys = [ans,ans+12];

[2,n*3+[1,3],n*6+[2,3]]’*ones(1,n)+ones(5,1)*[0:n-1]*3; nsys = ans(:)’;

if opt_2

[n*9+[1:4]]’*ones(1,n)+ones(4,1)*[0:n-1]*4;

else

[n*9+[1,3]]’*ones(1,n)+ones(2,1)*[0:n-1]*3;

end

nsys = [nsys,ans(:)’];

else

% For n=2, ans = [1:3,7:9,4:6,10:12]; nsys = [ans,ans+12];

[1:3,n*3+[1:3],n*6+[1:3]]’*ones(1,n)+ones(9,1)*[0:n-1]*3; nsys = ans(:)’;

if opt_2

[n*9+[1:4]]’*ones(1,n)+ones(4,1)*[0:n-1]*4;

else

[n*9+[1:3]]’*ones(1,n)+ones(3,1)*[0:n-1]*3;

end

nsys = [nsys,ans(:)’];

end

x = x0+dx; % Current state = trim + perturbation

% Set all other variables, outside the solution space, to zero

zeros(nx,1); ans(nsys) = x(nsys); x = ans;

u0 = x0(1:n*6); r0 = x0(n*6+[1:n*(o2+3)]);

u = x(1:n*6); r = x(n*6+[1:n*(o2+3)]);

% Create some transformation matrices

T_jN = zeros(3,3,n); T_cjN = NaN*ones(3,3,4,n);

T_jN(:,:,1) = feval(anglestr,r(n*3+[1:o2]));

% Determine sling configuration

mj = zeros(1,n);

MultipleCables = NaN; SingleCable = NaN;

for j = 2:n

mj(j) = length(CDAT_(j).l0);

MultipleCables(j) = (mj(j)>2) & (~any(diff(sort(CDAT_(j).i(1,:)))));

SingleCable(j) = (mj(j)==1);

end

kcj_N = NaN*ones(3,4,n); acj = NaN*ones(3,4,n); wcj_cj = NaN*ones(3,4,n);
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R1sjs_N = NaN*ones(3,n);

% Calculate the cable properties for each load

for j = 2:n

T_jN(:,:,j) = feval(anglestr,r(n*3+(j-1)*o2+[1:o2])); % Load-axes

R1sjs_N(:,j) = -r(1:3)+r((j-1)*3+[1:3]);

toplinks = HDAT_.S.Links.Data(CDAT_(j).i(1,:),:);

botlinks = LDAT_(j).S.Links.Data(CDAT_(j).i(2,:),:);

if MultipleCables(j)

Rajjs_N = R1sjs_N(:,j)*ones(1,mj(j))-T_jN(:,:,1)’*toplinks’;

CDAT_(j).Raji_N = Rajjs_N+T_jN(:,:,j)’*botlinks’; % Attachment-attachment

CDAT_(j).l = sqrt(sum((CDAT_(j).Raji_N).^2,1)); % Cable length

CDAT_(j).ldot = u((j-2)*3+3+[1:3])’*(T_jN(:,:,j)*CDAT_(j).Raji_N)./(CDAT_(j).l);

elseif SingleCable(j)

Rajjs_N = R1sjs_N(:,j)-T_jN(:,:,1)’*toplinks’;

CDAT_(j).Raji_N = Rajjs_N+T_jN(:,:,j)’*botlinks’; % Attachment-attachment

CDAT_(j).l = sqrt(sum((CDAT_(j).Raji_N).^2,1)); % Cable length

CDAT_(j).ldot = u((j-2)*3+3+[3]);

end

for i = 1:mj(j)

kcj_N(:,i,j) = CDAT_(j).Raji_N(:,i)/CDAT_(j).l(i); % Cable unit-vectors

acj(:,i,j) = k2a(kcj_N(:,i,j)); % Cable angles

T_cjN(:,:,i,j) = euler(acj(:,i,j)); % Transformations

end

end

% Construct the configuration matrices

[A,Ai,Adot,H] = hsl_config(u,T_jN,T_cjN,R1sjs_N,acj);

% Correct the system mass/inertia matrix for implementation into the equations

finD = isfinite(diag(D)); finDn = find(finD);

D2 = zeros(n*6,n*6); D2(finDn,finDn) = D(finDn,finDn);

for j = 1:n

jj = (j-1)*3+[1:3];

D2(jj,jj) = [ 1 -1 -1 ; -1 1 -1 ; -1 -1 1 ].*D2(jj,jj);

end

% Compute the gravitational force

g = 32.174; g_N = [ 0 0 g ]’*[ones(1,n),zeros(1,n)];

fg = zeros(n*6,1);

for j = 1:n

jj = (j-1)*3+[1:3]; fg(jj) = D2(jj(3),jj(3))*[ 0 0 g ]’;

end

% Calculate the body-axes velocities and current control inputs

v = A*u; va = v;

for j = 1:n
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jj = (j-1)*3+[1:3]; va(jj) = T_jN(:,:,j)*v(jj);

end

if all(size(TD)==[1,5])

d = TD(2:5)’;

else

tdi = (TD(:,1)==t);

if any(tdi)

d = TD(find(tdi),2:5)’;

else

d = interp1q(TD(:,1),TD(:,2:5),t)’;

end

end

% Compute the aerodynamic force and convert back to inertial axes

[AA,BA] = hsl_faero(va);

fa = AA*(va-va0) + BA*d; fa = diag(D2).*fa;

for j = 1:n

jj = (j-1)*3+[1:3]; fa(jj) = T_jN(:,:,j)’*fa(jj);

end

% Calculate the total static weight and moments on the helicopter

d1 = D2(1,1); m1 = 0;

for j = 2:n

jj = (j-1)*3+[1:3];

d1 = d1+D2(jj(1),jj(1)); m1 = m1+D2(jj(1),jj(1))*(r0(1)-r0(jj(1)));

end

% Compute the thrust force (approximation) and convert back to inertial axes

ft = zeros(n*6,1);

if 0 % thrust (resultant) is vertical

ft(3) = -d1*32.174;

ft(n*3+2) = -m1*32.174;

else % thrust is normal to body

ft(3) = -d1*32.174;

ft(n*3+2) = -m1*32.174;

for j = 1:n

jj = (j-1)*3+[1:3]; ft(jj) = T_jN(:,:,j)’*ft(jj);

end

end

% Compute the Coriolis forces and then the combined forces

X = zeros(n*6,1);

for j = 1:n

jj = (n+j-1)*3+[1:3];

X(jj) = skew3(u(jj))*D2(jj,jj)*u(jj);

end
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fx = -X-D2*Adot*u; fo = fa+fg+ft+fx;

% Determine a solution for the cable forces

fc = zeros(n*6,1); sf = fc;

H = H(finDn,:); Di = Di(finDn,finDn); % The sub-space defined above

if opt_{3} % Elastic solution

FC = zeros(n*12,1); hi = zeros(1,n*12);

for j = 2:n

jj = (j-1)*3+[1:3];

if MultipleCables(j)

fC = (CDAT_(j).K(1,:)).*(1-(CDAT_(j).l0)./(CDAT_(j).l)) ...

+(CDAT_(j).K(2,:)).*(CDAT_(j).ldot)./(CDAT_(j).l);

FC(jj) = sum(ones(3,1)*max(0,fC).*(CDAT_(j).Raji_N),2); hi(jj) = 1;

elseif SingleCable(j)

fC = (CDAT_(j).K(1)).*(1-(CDAT_(j).l0)./(CDAT_(j).l)) ...

+(CDAT_(j).K(2)).*(CDAT_(j).ldot)./(CDAT_(j).l);

FC(jj(1)) = max(0,fC).*(CDAT_(j).l); hi(jj(1)) = 1;

end

end

FC = FC(find(hi));

else % Inelastic solution

FC = -(H’*Di*H)\(H’*Di*fo(finDn));

end

fc(finDn) = H*FC; % The cable forces

Fc = zeros(n-1,1);

for j = 2:n

jj = (j-1)*3+[1:3];

Fc(j-1) = sqrt(fc(jj)’*fc(jj)); % The total cable force for each load

end

% Compute the specific force

sf(finDn) = Di*(fo(finDn)+fc(finDn));

% Calculate the accelerations and rates required by the integration

udot = Ai*sf; rdot = zeros(n*(o2+3),1); rdot(1:n*3) = v(1:n*3);

for j = 1:n

Wij_j = feval(ratesstr,r(n*3+(j-1)*o2+[1:o2]));

rdot(n*3+(j-1)*o2+[1:o2]) = Wij_j*v(n*3+(j-1)*3+[1:3]);

end

% Update the body-axes accelerations for the next iteration

vdot = Adot*u+A*udot; vadot = vdot;
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for j = 1:n

jj = (j-1)*3+[1:3]; vadot(jj) = T_jN(:,:,j)*vdot(jj);

end

% Combine the velocities and positions into the state rate vector

xdot = [udot;rdot];

% Augment the state rate with the null axes (non-solution space)

zeros(nx,1); ans(nsys) = xdot(nsys); xdot = ans;

HSL FAERO.M

function [A,B] = hsl_faero(va)

% HSL_FAERO : Function to compute aerodynamic state-space matrices

%

% [A,B] = HSL_FAERO(va)

%

% va : Body-axes velocity vector [n*6x1]

%

% A : State matrix [n*6xn*6]

% B : Control matrix [n*6x4]

%

% See HSL_FUN for more information

% R.A. Stuckey 01/10/97 (c) 1997, Defence Science and Technology Organisation

% -----------------------------------------------------------------------------

global HDAT_ LDAT_ opt_

n = length(va)/6;

% Determine aerodynamic derivatives to be used in solution

if strncmpi(opt_{1},’longitudinal’,length(opt_{1}))

[ 1 0 1 0 1 0 ]’*[ 1 0 1 0 1 0 1 0 0 1 ]; I = ans(:)’;

elseif strncmpi(opt_{1},’lateral’,length(opt_{1}))

[ 0 1 0 1 0 1 ]’*[ 0 1 0 1 0 1 0 1 1 1 ]; I = ans(:)’;

else

I = ones(1,60);

end

% Aerodynamic coefficient matrices for the helicopter

Vj = sqrt(va(1:3)’*va(1:3))*0.5925; nv = length(HDAT_.V); % Velocity (knots)

if Vj<HDAT_.V(1)

Vj = HDAT_.V(1);

elseif Vj>HDAT_.V(nv)

Vj = HDAT_.V(nv);

end

if nv>1

% Interpolate between state/control matrices based on velocity

83



DSTO–TR–1257

if 1 %%% SAS off

Aj = interp1q(HDAT_.V,HDAT_.A(:,:,1),Vj).*I;

else %%% SAS on

Aj = interp1q(HDAT_.V,HDAT_.A(:,:,2),Vj).*I;

end

else

Aj = HDAT_.A.*I;

end

% Integrate derivatives into the system state-space matrices

a = zeros(6,6); A = zeros(n*6,n*6);

b = zeros(6,4); B = zeros(n*6,4);

jj = [1:3,n*3+[1:3]];

a(:) = Aj(1:36); A(jj,jj) = a;

b(:) = Aj(37:60); B(jj,:) = b;

% Aerodynamic coefficient matrices for each load

for j = 2:n

jj = (j-1)*3+[1:3];

Vj = sqrt(va(jj)’*va(jj))*0.5925; nv = length(LDAT_(j).V);

if Vj<LDAT_(j).V(1)

Vj = LDAT_(j).V(1);

elseif Vj>LDAT_(j).V(nv)

Vj = LDAT_(j).V(nv);

end

% Interpolate between state/control matrices based on velocity

if nv>1

Aj = interp1q(LDAT_(j).V,LDAT_(j).A,Vj).*I;

else

Aj = LDAT_(j).A.*I;

end

% Integrate derivatives into the system state-space matrices

jj = [(j-1)*3+[1:3],n*3+(j-1)*3+[1:3]];

a(:) = Aj(1:36); A(jj,jj) = a;

b(:) = Aj(37:60); B(jj,:) = b;

end

if 0 %%% CONTROL INPUTS ARE IN 0.1IN UNITS

B = B*0.1;

end

HSL CONFIG.M

function [A,Ai,Adot,H] = hsl_config(u,T_jN,T_cjN,R1sjs_N,acj)

% HSL_CONFIG : Calculate the configuration matrix and its inverse
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%

% [A,Ai,Adot,H] = HSL_CONFIG(u,T_jN,T_cjN,R1sjs_N,acj)

%

% u : Generalised velocity vector [n*6x1]

% T_jN : Load-axes transformation matrix [3x3xn]

% T_cjN : Cable-axes transformation matrix [3x3xn]

% R1sjs_N : Position vector from helicopter to load cg [3xn]

% acj : Cable angle matrix [3x4xn]

%

% A : Configuration matrix [n*6xn*6]

% Ai : Inverse configuration matrix [n*6xn*6]

% Adot : Configuration rate matrix [n*6xn*6]

% H : Basis matrix [n*6xnh]

%

% See HSL_FUN for more information

% Also see reference [1] for details of the configuration matrices.

%

% 1. Stuckey, R.A

% "Mathematical Modelling of Helicopter Systems"

% DSTO-TR-000, Defence Science and Technology Organisation, Sep, 1999

% R.A. Stuckey 28/07/98 (c) 1998, Defence Science and Technology Organisation

% -----------------------------------------------------------------------------

global HDAT_ LDAT_ CDAT_ opt_

n = length(LDAT_); n = n+(~n);

% Determine sling configuration

mj = zeros(1,n);

MultipleCables = NaN; SingleCable = NaN;

for j = 2:n

mj(j) = length(CDAT_(j).l0);

MultipleCables(j) = (mj(j)>2) & (~any(diff(sort(CDAT_(j).i(1,:)))));

SingleCable(j) = (mj(j)==1);

end

% Construct the configuration matrices

A = eye(n*6,n*6); Ai = A; Adot = zeros(n*6,n*6); H = zeros(n*6,n*12);

for j = 2:n

jj = (j-1)*3+[1:3];

toplinks = HDAT_.S.Links.Data(CDAT_(j).i(1,:),:);

botlinks = LDAT_(j).S.Links.Data(CDAT_(j).i(2,:),:);

if MultipleCables(j)

Rjsaj_j = T_jN(:,:,j)*(-R1sjs_N(:,j)+T_jN(:,:,1)’*toplinks(1,:)’);

A(jj,1:3) = eye(3);

A(jj,jj) = T_jN(:,:,j)’;

A(jj,n*3+[1:3]) = -T_jN(:,:,1)’*skew3(toplinks(1,:)); % A_j,n+1

A(jj,n*3+jj) = T_jN(:,:,j)’*skew3(Rjsaj_j); % A_j,n+j
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if nargout>1

Ai(jj,1:3) = -T_jN(:,:,j);

Ai(jj,jj) = T_jN(:,:,j);

Ai(jj,n*3+[1:3]) = -T_jN(:,:,j)*A(jj,n*3+[1:3]); % B_j,n+1

Ai(jj,n*3+jj) = -T_jN(:,:,j)*A(jj,n*3+jj); % B_j,n+j

end

if nargout>2

Adot(jj,jj) = T_jN(:,:,j)’*skew3(u(n*3+jj));

Adot(jj,n*3+[1:3]) = ...

-T_jN(:,:,1)’*skew3(u(n*3+[1:3]))*skew3(toplinks(1,:)); % Adot_j,n+1

Adot(jj,n*3+jj) = ...

T_jN(:,:,j)’*( skew3(u(n*3+jj))*skew3(Rjsaj_j)-skew3(u(jj)) ); % Adot_j,n+j

end

if nargout>3

H(1:3,jj) = eye(3);

H(jj,jj) = -eye(3);

H(n*3+[1:3],jj) = skew3(toplinks(1,:))*T_jN(:,:,1); % Z1j_1

H(n*3+jj,jj) = -skew3(Rjsaj_j)*T_jN(:,:,j); % Zjj_j

end

elseif SingleCable(j)

A(jj,1:3) = eye(3);

A(jj,jj) = T_cjN(:,:,1,j)’;

A(jj,n*3+[1:3]) = -T_jN(:,:,1)’*skew3(toplinks); % A_j,n+1

A(jj,n*3+jj) = T_jN(:,:,j)’*skew3(botlinks); % A_j,n+j

if nargout>1

Ai(jj,1:3) = -T_cjN(:,:,1,j);

Ai(jj,jj) = T_cjN(:,:,1,j);

Ai(jj,n*3+[1:3]) = -T_cjN(:,:,1,j)*A(jj,n*3+[1:3]); % B_j,n+1

Ai(jj,n*3+jj) = -T_cjN(:,:,1,j)*A(jj,n*3+jj); % B_j,n+j

end

if nargout>2

acjdot = hsl_config_ac(acj(1,1,j),CDAT_(j).l,u(jj));

Wcj_cj = erates(acj(:,1,j)); wcj_cj = Wcj_cj*acjdot;

Adot(jj,jj) = T_cjN(:,:,1,j)’*skew3(wcj_cj);

Adot(jj,n*3+[1:3]) = ...

-T_jN(:,:,1)’*skew3(u(n*3+[1:3]))*skew3(toplinks); % Adot_j,n+1

Adot(jj,n*3+jj) = ...

T_jN(:,:,j)’*( skew3(u(n*3+jj))*skew3(botlinks) ); % Adot_j,n+j

end

if nargout>3

H(1:3,jj) = eye(3);

H(jj,jj) = -eye(3);

H(n*3+[1:3],jj) = skew3(toplinks)*T_jN(:,:,1); % Z1j_1

H(n*3+jj,jj) = -skew3(botlinks)*T_jN(:,:,j); % Zjj_j

end

end

if 0 %%% CHECK EXPLICIT INVERSE

fprintf(’\n CHECKING INVERSE ...’)

inverr = max(max(abs(inv(A)-Ai)));

if (inverr>1e-6)

error(sprintf(’ Inverse not accurate: ERR = %g’,inverr))

end

end

end
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% Construct the basis matrix

hi = zeros(1,n*12);

kcj_N = zeros(3,n); kc1_N = kcj_N; kc2_N = kcj_N;

for j = 2:n

jj = (j-1)*3+[1:3];

if MultipleCables(j) % Use entire force-space

hi(jj) = 1;

elseif SingleCable(j) % Use only cable z-axis

kcj_N(:,j) = T_cjN(3,:,1,j)’;

H(:,jj(1)) = H(:,jj)*kcj_N(:,j); hi(jj(1)) = 1;

end

end

H = H(:,find(hi));

% -----------------------------------------------------------------------------

function acdot = hsl_config_ac(ac,l,vc)

% hsl_config_ac : Calculate cable angular rates

%

% acdot = HSL_CONFIG_AC(ac,l,vc)

%

% ac : Cable angle vector [1xn]

% l : Cable length vector [1xn]

% vc : Cable velocity vector [1xn]

%

% acdot : Cable angle-rate matrix [3xn]

%

% See HSL_CONFIG

m = length(l);

acdot = [ vc(1)./l./cos(ac(1,:)) ; -vc(2)./l ; zeros(1,m) ];

EULER.M

function T = euler(e)

% EULER : Euler-angle transformation matrix

%

% T = EULER(e)

%

% e : vector of Euler angles [1x3]

% = [ phi theta psi ]

%

% T : transformation matrix [3x3]

%

% where the transformation from inertial (N) to body (b) axes follows:
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%

% F_b = T_bN * F_N ; T_bN = euler(e)

%

% See HSL_FUN

% R.A. Stuckey 01/10/97 (c) 1997, Defence Science and Technology Organisation

% -----------------------------------------------------------------------------

ce = cos(e); se = sin(e);

T = [ ce(2)*ce(3) ce(2)*se(3) -se(2)

se(1)*se(2)*ce(3)-se(3)*ce(1) se(3)*se(2)*se(1)+ce(3)*ce(1) se(1)*ce(2)

ce(3)*ce(1)*se(2)+se(3)*se(1) se(3)*ce(1)*se(2)-ce(3)*se(1) ce(1)*ce(2) ];

E2Q.M

function Q = e2q(E)

% E2Q : Convert angular positions from Euler to quaternion representation

%

% Q = E2Q(E)

%

% E : Euler matrix [mx3]|[3xn]

% = [ Phi Theta Psi ]

%

% Q : quaternion matrix [mx4]|[4xn]

% = [ E0 E1 E2 E3 ]

%

% See also Q2E

% R.A. Stuckey 07/05/98 (c) 1998, Defence Science and Technology Organisation

% -----------------------------------------------------------------------------

Ne = size(E); trans = (Ne(2)~=3);

if trans, E = E’; Ne = Ne([2,1]); end

SE = sin(E/2); CE = cos(E/2); Q = zeros(Ne(1),4);

Q(:,1) = SE(:,1).*SE(:,2).*SE(:,3) + CE(:,1).*CE(:,2).*CE(:,3);

Q(:,2) = -CE(:,1).*SE(:,2).*SE(:,3) + SE(:,1).*CE(:,2).*CE(:,3);

Q(:,3) = SE(:,1).*CE(:,2).*SE(:,3) + CE(:,1).*SE(:,2).*CE(:,3);

Q(:,4) = CE(:,1).*CE(:,2).*SE(:,3) - SE(:,1).*SE(:,2).*CE(:,3);

if trans, Q = Q’; end

ERATES.M

function W = erates(e)

% ERATES : Euler transform matrix for angular velocities

%

% W = ERATES(e)
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%

% e : vector of Euler angles [1x3]

% = [ phi theta psi ]

%

% W : transformation matrix [3x3]

%

% where

% . . .

% [ p q r ]’ = W * [ phi theta psi ]’

%

% See also ERATESI

% R.A. Stuckey 07/05/98 (c) 1998, Defence Science and Technology Organisation

% -----------------------------------------------------------------------------

ce = cos(e); se = sin(e);

W = [ 1 0 -se(2)

0 ce(1) se(1)*ce(2)

0 -se(1) ce(1)*ce(2) ];

ERATESI.M

function Wi = eratesi(e)

% ERATESI : Inverse Euler transform matrix for angular velocities

%

% Wi = ERATESI(e)

%

% e : vector of Euler angles [1x3]

% = [ phi theta psi ]

%

% Wi : inverse transformation matrix [3x3]

%

% where

% . . .

% [ phi theta psi ]’ = Wi * [ p q r ]’

%

% See also ERATES

% R.A. Stuckey 07/05/98 (c) 1998, Defence Science and Technology Organisation

% -----------------------------------------------------------------------------

ce = cos(e); se = sin(e); te = tan(e);

Wi = [ 1 se(1)*te(2) ce(1)*te(2)

0 ce(1) -se(1)

0 se(1)/ce(2) ce(1)/ce(2) ];

K2A.M

function acj = k2a(kcj)
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% K2A : Convert k-unit vectors to cable-oriented Euler angles

%

% a = K2A(k)

%

% k : unit vectors [nx3]

%

% a : Euler angle vector [nx3]

%

% See HSL_FUN

% R.A. Stuckey 20/04/99 (c) 1999, Defence Science and Technology Organisation

% -----------------------------------------------------------------------------

nk = size(kcj);

if ~any(nk==3), error(’ size(kcj,2)~=3!’), end

if nk(2)~=3, kcj = kcj’; end

acj = 0*kcj;

acj(:,1) = asin(-kcj(:,2));

acj(:,2) = asin( kcj(:,1)./cos(acj(:,1)) );

acj(:,3) = 0;

if nk(2)~=3, acj = acj’; end

SKEW3.M

function S = skew3(v)

% SKEW3 : The general skew-symmetric matrix, S(x,y,z)

%

% S = skew3(v)

%

% v : Generic [x,y,z] vector

%

% S : Skew matrix [3x3]

%

% See HSL_CONFIG, HSL_FUN

% R.A. Stuckey 20/04/99 (c) 1999, Defence Science and Technology Organisation

% -----------------------------------------------------------------------------

S = [ 0 -v(3) v(2)

v(3) 0 -v(1)

-v(2) v(1) 0 ];

HSLPLOT.M

% HSLPLOT : Plot output from HSLSIM

%

% HSLPLOT
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%

% Inputs:

%

% opt_ : GLOBAL options cell array [4x1]

%

% Va : Body-axes velocity matrix [Nxn*6]

% Vadot : Body-axes acceleration matrix [Nxn*6]

% FC : Cable force matrix [Nx(n-1)]

% R : Configuration position coordinate matrix [Nxn*6]

% Acj : Cable angle matrix [Nx(n-1)*3]

% TDD : Updated time & control input matrix [Nx5]

%

% See HSL_INIT, HSLSIM

% R.A. Stuckey 01/10/97 (c) 1997, Defence Science and Technology Organisation

% -----------------------------------------------------------------------------

yv = {’Rotation’,0,’HorizontalAlignment’,’right’};

% Determine axes to be plot

if strncmpi(opt_{1},’longitudinal’,length(opt_{1}))

Plots = { ’u’ ’t’ ; ’w’ ’tc’ ; ’q’ ’db’ ; ’fc’ ’dc’ };

if ~any(any(TDD(xn,[2,5])))

Plots = { ’u’ ’t’ ; ’w’ ’tc’ ; ’q’ ’ud’ ; ’fc’ ’wd’ };

end

elseif strncmpi(opt_{1},’lateral’,length(opt_{1}))

Plots = { ’v’ ’h’ ; ’w’ ’t’ ; ’r’ ’s’ ; ’fc’ ’da’ ; ’’ ’dr’ ; ’’ ’dc’ };

if ~any(any(TDD(xn,[3:5])))

Plots = { ’v’ ’h’ ; ’w’ ’t’ ; ’r’ ’s’ ; ’fc’ ’vd’ ; ’’ ’wd’ };

end

Plots = { ’v’ ’h’ ; ’w’ ’t’ ; ’r’ ’s’ ; ’fc’ ’vd’ };

elseif strncmpi(opt_{1},’combined’,length(opt_{1}))

Plots = { ’u’ ’p’ ; ’v’ ’q’ ; ’w’ ’r’ ; ’h’ ’da’ ; ’hc’ ’db’ ; ’t’ ’dr’ ; ’tc’ ’dc’ };

if ~any(any(TDD(xn,[2:5])))

Plots = { ’u’ ’h’ ; ’v’ ’hc’ ; ’w’ ’t’ ; ’p’ ’tc’ ; ’q’ ’ud’ ; ’r’ ’vd’ ; ’fc’ ’wd’ };

end

end

sp = {size(Plots,1),size(Plots,2)};

Plots(sp{1}+1,:) = { ’’ ’’ }; sp{1} = sp{1}+1;

if (sp{1}>8), warning(’ Too many subplots ! Figure size will be reduced.’), end

ha = zeros(sp{:}); hL = zeros(n,sp{1}*sp{2});

pos = get(0,’DefaultFigurePosition’);

pos(2) = pos(2)-pos(4)*(sp{1}-4)/4; pos(4) = pos(4)*sp{1}/4; pos(3) = pos(3);

h = figure(’Position’,pos);

set(h,’DefaultAxesPosition’,[0.26 0.19 0.70 0.73])
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for i = 1:sp{1}

for j = 1:sp{2}

if ~isempty(Plots{i,j})

k = (i-1)*sp{2}+j;

ha(i,j) = subplot(sp{:},k);

if (i<sp{1})&(~isempty(Plots{i+1,j}))

set(ha(i,j),’XTickLabel’,[]);

else

xlabel(’t, sec’)

end

end

% Plot each set of variables

nn = [0:n-1];

switch Plots{i,j}

case ’u’

hL(:,k) = plot(t(xn),Va(xn,nn*3+1),’-k’); ylabel({’u’,’ft/s’},yv{:})

case ’v’

hL(:,k) = plot(t(xn),Va(xn,nn*3+2),’-k’); ylabel({’v’,’ft/s’},yv{:})

case ’w’

hL(:,k) = plot(t(xn),Va(xn,nn*3+3),’-k’); ylabel({’w’,’ft/s’},yv{:})

case ’p’

hL(:,k) = plot(t(xn),Va(xn,n*3+nn*3+1)*180/pi,’-k’); ylabel({’p’,’deg/s’},yv{:})

case ’q’

hL(:,k) = plot(t(xn),Va(xn,n*3+nn*3+2)*180/pi,’-k’); ylabel({’q’,’deg/s’},yv{:})

case ’r’

hL(:,k) = plot(t(xn),Va(xn,n*3+nn*3+3)*180/pi,’-k’); ylabel({’r’,’deg/s’},yv{:})

case ’fc’

hL(2:n,k) = plot(t(xn),FC(xn,:),’-k’); ylabel({’fc’,’/g’},yv{:})

case ’h’

hL(:,k) = plot(t(xn),R(xn,n*3+nn*3+1)*180/pi,’-k’); ylabel({’\phi’,’deg’},yv{:})

case ’t’

hL(:,k) = plot(t(xn),R(xn,n*3+nn*3+2)*180/pi,’-k’); ylabel({’\theta’,’deg’},yv{:})

case ’s’

hL(:,k) = plot(t(xn),R(xn,n*3+nn*3+3)*180/pi,’-k’); ylabel({’\psi’,’deg’},yv{:})

case ’hc’

hL(2:n,k) = plot(t(xn),Acj(xn,[0:n-2]*3+1)*180/pi,’-k’);

ylabel({’\phi_c’,’deg’},yv{:})

case ’tc’

hL(2:n,k) = plot(t(xn),Acj(xn,[0:n-2]*3+2)*180/pi,’-k’);

ylabel({’\theta_c’,’deg’},yv{:})

case ’sc’

hL(2:n,k) = plot(t(xn),Acj(xn,[0:n-2]*3+3)*180/pi,’-k’);

ylabel({’\psi_c’,’deg’},yv{:})

case ’db’

hL(1,k) = plot(t(xn),TDD(xn,2)); ylabel({’\delta_b’,’in’},yv{:})

case ’da’

hL(1,k) = plot(t(xn),TDD(xn,3)); ylabel({’\delta_a’,’in’},yv{:})

case ’dr’

hL(1,k) = plot(t(xn),TDD(xn,4)); ylabel({’\delta_r’,’in’},yv{:})

case ’dc’

hL(1,k) = plot(t(xn),TDD(xn,5)); ylabel({’\delta_c’,’in’},yv{:})

case ’ud’

hL(:,k) = plot(t(xn),Vadot(xn,nn*3+1),’-k’);

ylabel({’\fontsize{6}\bullet’,’\fontsize{10}u’,’ft/s^2’},yv{:})

case ’vd’
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hL(:,k) = plot(t(xn),Vadot(xn,nn*3+2),’-k’);

ylabel({’\fontsize{6}\bullet’,’\fontsize{10}v’,’ft/s^2’},yv{:})

case ’wd’

hL(:,k) = plot(t(xn),Vadot(xn,nn*3+3),’-k’);

ylabel({’\fontsize{6}\bullet’,’\fontsize{10}w’,’ft/s^2’},yv{:})

case ’pd’

hL(:,k) = plot(t(xn),Vadot(xn,n*3+nn*3+1)*180/pi,’-k’);

ylabel({’\fontsize{6}\bullet’,’\fontsize{10}p’,’deg/s^2’},yv{:})

case ’qd’

hL(:,k) = plot(t(xn),Vadot(xn,n*3+nn*3+2)*180/pi,’-k’);

ylabel({’\fontsize{6}\bullet’,’\fontsize{10}q’,’deg/s^2’},yv{:})

case ’rd’

hL(:,k) = plot(t(xn),Vadot(xn,n*3+nn*3+3)*180/pi,’-k’);

ylabel({’\fontsize{6}\bullet’,’\fontsize{10}r’,’deg/s^2’},yv{:})

end

end

end

SP = diag([1:sp{1}])*(ha>0); [ans,ans] = max(SP); [spi,spj] = max(ans);

set(ha(find(ha)),’XLim’,[0 round(t(xn(end)))])

set(ha(find(ha)),’XGrid’,’on’,’YGrid’,’on’)

% Change line properties for clarity

set(hL(1,find(hL(1,:))),’LineStyle’,’-’,’Linewidth’,1.0,’Color’,[ 0 0 0 ])

if n>1, set(hL(2,find(hL(2,:))),’LineStyle’,’-’,’LineWidth’,0.5,’Color’,0.5*[ 1 1 1 ]), end

if n>2, set(hL(3,find(hL(3,:))),’LineStyle’,’--’,’LineWidth’,0.5,’Color’,0.5*[ 1 1 1 ]), end

if n>3, set(hL(4,find(hL(4,:))),’LineStyle’,’:’,’LineWidth’,0.5,’Color’,0.5*[ 1 1 1 ]), end

% Add a legend

if n==1

return

elseif n==2

[hl,ho] = legend(hL(1:2,1),’Helicopter’,’Slung-load’,2);

elseif n==3

[hl,ho] = legend(hL(1:3,1),’Helicopter’,’Aft Load’,’Forward Load’,3);

elseif n==4

[hl,ho] = legend(hL(1:4,1),’Helicopter’,’AftLoad’,’MidLoad’,’FwdLoad’,4);

end

% Remove those pesky callbacks (created by LEGEND)

set(hl,’ButtonDownFcn’,’’, ...

’DeleteFcn’,’’, ...

’UserData’,[])

set(ho,’ButtonDownFcn’,’’)

% Fix up the legend text

ht = findobj(ho,’Type’,’text’);

set(ht,’FontUnits’,’points’);

tp1 = get(ht(1),’Position’);

set(ht(1),’Units’,’pixels’)
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a5e = get(ht(1),’Extent’);

set(ht(1),’Units’,’data’,’Position’,tp1)

set(hl,’Units’,’pixels’)

lp = get(hl,’Position’);

lp(4) = 1.5*a5e(4);

set(hl,’Position’,lp)

set(hl,’Units’,’normalized’)

lp = get(hl,’Position’);

a1p = get(ha(1,1),’position’); a2p = get(ha(1,2),’position’);

a3p = get(ha(spi-1,spj),’position’); a4p = get(ha(spi,spj),’position’);

lp(1) = (a1p(1)+a1p(3)+a2p(1))/2-lp(3)/2;

lp(2) = a4p(2)-2*(a3p(2)-(a4p(2)+a4p(4)))-lp(4);

set(hl,’Position’,lp)
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