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� Introduction

The sophistication of contemporary aviation technology is placing ever increasing demands
for modelling on engineering personnel� The specialized and detailed description of complex
components is essential� but e�ective communication between disciplines is also required� In
aviation engineering support� and in research and development� the integration of results must
be improved� so that global project aims can be satisfactorily achieved�

A model of an artifact or an activity provides a simpli�ed representation of that entity� The aim
of modelling is to capture the important features without including unnecessary detail �Winston
��	
�� Di�erent disciplines and activities have distinct views of the important features of the
item being modelled� so various models of a single entity are generally created� Models may be
physical� as used in wind tunnels� geometric� as in wire�frame models generated by CAD�CAM
systems or mathematical� as in the numeric analyses used to compute aircraft trajectories�
These disparate models are representations of the same entity� and will be specialised according
to discipline and activity� Thus modelling has two aspects  the model representation� and the
model analysis  which are the focus of this paper�

It is the interplay between model representation and analysis which is most important for
complex modelling tasks� While it is appropriate to develop distinct models� an integrated

approach to modelling would help to bridge the gap between engineering specialities� The
speci�c goal we have in mind is to achieve such integration in the mathematical structure of
models� their implementation� and how their results are interchanged as a project develops�

Examination and classi�cation of the usual simplifying assumptions should enable us to discover
a useful �super�model�� From an understanding of the commonality� and di�erences� between
models optimized for di�erent specialities� and how these relate to the �real� aircraft� we hope to
work towards a common representation  a concise statement of all of the information relevant
to a complex aeronautical modelling project�
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Hence we dissect the modelling process in order to see how a common representation might be
related to particular specialities so that the interplay between them is mediated by a common
layer  a lingua franca for interdisciplinary aeronautical modelling activities�

In outline� Section � begins by discussing discipline based specialization of model representa�
tions� Section � follows by developing the complementary aspect of activity based specialization
in the methods for model analysis� Section 
 develops the idea of a common representation to
smooth their interplay� The closing section reviews the paper and o�ers concluding remarks�

� Discipline�based Specialization of Models

Modern aircraft are complex systems� and disciplinary experts focus on di�erent aspects of the
aircraft design to produce e�ective solutions and perform a variety of analysis tasks� Di�erent
models are appropriate for each analysis� as illustrated with two examples in Figure �� In the
lower left corner� the aerodynamicist�s view is represented by a surface panel model to be used
in a �ow solver� such as VSAERO �Quick ������ In the upper right corner� the structural
dynamicist�s view is represented by a lumped�mass model for vibration analysis �Dunn ������
The two approaches re�ect widely di�erent representations of an aircraft model� However� in
aeroelastic analysis� both representations are needed and the two must interact with one an�
other �Gupta ������ Other examples include �nite element models for structural analysis �Jones
� Callinan ���	�� rigid�body �ight dynamic models for system identi�cation �Feik ���	�� and
point mass models for operational analysis �Tidhar� Selvestrel � Heinze ������ Each of these
representations is di�erent� each is appropriate to its purpose�

Figure �� Di�erent models serve di�erent purposes



Table �� Scope of aeronautical modelling activities

Activity Inputs Nature of model Outputs Application

ballistic trajectory store aerodynamics� ��dof rigid body time�x�y�z weapon precision�

prediction inertial properties trajectory ballistic tables

structural analysis material properties� �nite element or stresses� strains� design process

geometry �nite di�erence loads

handling qualities pilot control �ight dynamic aircraft response safety validation�

evaluation inputs cost�bene�t�

mission

e�ectiveness

stores clearance con�guration� store aerodynamic air�store platform safety�

prediction �ight condition �aircraft �ight interaction� mission

dynamic model stores release e�ectiveness

prediction of aerodynamic unsteady load frequency �utter clearance

aeroelastic e�ects surface excitation aerodynamic spectrum for stores

�mass model

input design desired �ight �ight dynamic aircraft response optimal

path manoeuvring

operational scenarios� individual aircraft exchange ratios� new�improved

employment missions store sensors� operating tactics� purchase

of aircraft pilot model� schedules advice� resource

tactical doctrine allocation

pilot in�the�loop pilot control pilot and �ight aircraft response human�aircraft

simulation input scenarios dynamic models procedures interface�

aircrew workload

platform design mission roles� structural� strength� lift� design concepts

design concepts aerodynamic drag� performance

The broad scope of aeronautical modelling activities is shown in Table �� Each model is charac�
terised by its internal nature and by its inputs and outputs� Furthermore� the internal structure
may be completely speci�c to the task while the input and output may be a subset of a global
representation� This observation is particularly relevant for activities that require the involve�
ment of several disciplinary specialists� such as the investigation of aeroelastic e�ects� which
includes aerodynamic and structural investigations� In those cases� the analysis details of each
specialist need not be communicated� but data sharing is essential� A central data model should
be shared by all the disciplines� and specialization should involve a mapping from the general
shared model to the speci�c local inputs and outputs� In geometric modelling� for example� a
Non�Uniform Rational B�Splines �NURBS� �Farin ��		� geometry model might be shared� and
specialized panel models might be separately optimised for CFD and for structural computa�
tions� These disciplinary activities require di�erent concentrations of panels and so a common
panel model would be ine�cient�



� Activity�based Specialization of Models

Computational models are classi�ed in Figure �� indicating the core activities of prediction�
evaluation and optimization� In prediction� a known set of inputs are given� and the model is
used to predict a corresponding set of outputs� In evaluation� a number of inputs are trialed and
the output behaviour evaluated to determine the best alternative� or relative success at meeting
a speci�ed condition� In optimization� feedback operates to vary inputs and�or the model
itself according to the resultant output� Thus one attempts to harness both the predictive and
evaluative capabilites of a model to achieve design goals� often in an iterative process of model
re�nement�
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Figure �� Hierarchical classi�cation of computational models

Techniques can be characterised along the dimensions of scope� use of knowledge� adaptiveness
and strategy complexity� In Table �� a range of techniques are shown� Use of knowledge
refers to the amount of prior information that is required in order to facilitate each technique�
Adaptive techniques� such as maximum likelihood and genetic programming fall into the class
of optimization schemes� since the model is improved each iteration� based on the results of
previous con�gurations�

It is important to match the model to the type of activity being performed� When a large input
set is used to conduct a preliminary survey of a particular domain� a model with moderate
accuracy and low computational cost is appropriate� If minor re�nements of an established
design are being explored� the input set will be more selective and the output tolerance higher�
hence more expensive analyses with greater computational cost are warranted� Analyses that
provide reasonable functional accuracy may produce wildly inaccurate gradient information�
which makes them unsuitable for calculus�based optimization� In this situation� the model may



Table �� Modelling techniques

Scope Use of knowledge Adaptiveness Complexity

Finite input set global low �xed simple

e�g� test all

then evaluate

Selective input set global medium �xed simple

e�g� choose wisely

then test all

Local gradient local high adaptive intermediate

e�g� simplex�

maximum likelihood

Global adaptive global moderate adaptive complex

e�g� genetic programming�

simulated annealing

be modi�ed by using a large input set to survey the space� and then �tting a smooth response

surface through the surveyed data points� This produces a specialized response surface model
that is well�matched to the optimization activity� and this approach is beginning to be practiced
by engineers performing multidisciplinary optimization�

� Common Representation

The preceding sections have demonstrated the need for a shared representation across dis�
ciplines� which is specialized for particular analysis activities� The quality of the common
representation is measured by the freedom one has to pass from it �via concretion� to a rep�
resentation optimized for a particular discipline� and� in the other direction �via abstraction�
from the model output �via a concrete activity� to an element of the common representation�
Evaluative and design procedures can also be �interfaced� to the abstract level�

Elements of a common representation might include�

� surface geometry �e�g� via NURBS�

� mass concentration �panels with mass�

� loads �point loads� or distributed loads�

� de�ections �dynamic geometry�

A concretion layer � an abstract common representation � can be specialized to the discipline
involved� For example� One might pass from a NURBS geometry description to a panel model
optimized for CFD� or an alternative panel model optimized for structural computation�

The presence of an abstraction layer allows the model to have its inputs or outputs processed
in some manner to prepare it for the activity in mind� For example� a predictive model which



is good at generating discrete function points� but not gradients might be augmented with a
�lter in order to produce the required information�

Hence� the concepts of concretion and abstraction layers provide means by which the model
can be altered to match either discipline or activity� This scheme would give the user greater
control over their modelling processes and improve interaction with other specialists�

� Conclusion

Clearly� the focus of interdisciplinary discussion must be on �nding a generally useful common
representation� and an understanding of the concretion and abstraction processes for particular
disciplines and activities�

It is constructive to appreciate the methodological similarities in what have been regarded as
disparate areas of aeronautical engineering support� research and development� Many of these
are mathematically based� and make similar assumptions and simpli�cations� Examination of
the similarities enables us to conceive more general and sophisticated methods for manipulating
models� Ultimately� one hopes that newer methods will enable us to deal with complex models
more e�ectively�
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