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Abstract: An approach to improve the navigational accuracy of underwater vehicles using
patches of bathymetry acquired selectively from the terrain as observations within a Simultane-
ous Localisation and Mapping (SLAM) framework is presented. Each patch is filtered and stored
as a gridded sub-map, or Navigation Cell, in the dynamic system model, along with the vehicle
pose. Upon subsequent crossings over the same patch, additional cells are stored, then correlated
against the original and the observations updated accordingly. The updated observations are
fed into an Extended Kalman Filter (EKF), which updates the vehicle state. The approach has
been demonstrated in simulation, using both synthetically generated bathymetry and real terrain
data collected from a surface-vessel mounted micro-bathymetric sonar. It was found that the
error build-up could be effectively bounded by employing the selective approach, whilst keeping
the system state to a manageable size for real-time adoption. The locations of Navigation Cells
can be both pre-defined and dynamically located at points where the terrain variability is high.
In addition, any Navigation Cell can be chosen by the mission controller to be re-visited for
correlation, should the vehicle’s estimated state covariance exceed some pre-defined threshold.
The paper concludes with some discussion of the advantages and disadvantages of the technique.

Keywords: Autonomous Vehicle, Localisation, Mapping, Terrain, Navigation, Mission Control,
Micro-bathymetry.

1. INTRODUCTION

In most AUV systems, underwater navigation is achieved
by dead-reckoning of the integrated velocities from the
on-board IMU, starting at an initial pose with periodic
sojourns to the surface to obtain GPS corrections. How-
ever, under certain circumstances, this may be undesir-
able or impractical, prompting the need for supplemen-
tary means of positioning while underwater. Furthermore,
established procedures that involve the placement of un-
derwater transponders represent an overhead which may
be similarly unfavourable. In recent years, two localisation
techniques which utilise other exteroceptive sensor infor-
mation have become prominent: Terrain-Relative Navi-
gation (TRN) (Nygren, 2005; Meduna et al., 2009) and;
Concurrent or Simultaneous Localisation and Mapping
(SLAM) (Smith et al., 1997; Williams, 2001). Both have
their advantages and disadvantages. For TRN, the main
disadvantage is the requirement for a bathymetric map to
be known a-priori by the navigation system. Numerous
variations of the SLAM technique exist, but for many
of them, the main disadvantage lies in the necessity to
manage a potentially large number of observations and
effectively integrate them into the estimated system state
(Bosse et al., 2004). More importantly, most featureless
SLAM techniques, which use sonar-acquired bathymetry,
have been developed with a primary focus toward build-
ing self-consistent maps in post-processing (Roman, 2005;
Ruiz et al., 2004; Fairfield and Wettergreen, 2008; Barkby

et al., 2011), and are not ideally suited for real-time
employment on memory-limited hardware. The approach
discussed in this paper draws from both techniques. The
observations are represented by bathymetric grid-points
within sub-maps, or Navigation Cells, at known locations
relative to the vehicle and updated using a simple cor-
relation method as with the basic TRN procedure. With
the approach described herein, these observations, along
with the vehicle pose, are stored directly in the system
state for subsequent update by the SLAM algorithm. The
Navigation Cells and consequently, the locations for ap-
plication of the SLAM algorithm, are therefore chosen
selectively and may be either pre-defined in the mission
plan, or dynamically located according to the variability
of the underlying terrain. Unlike the TRN approach, the
gridded observations can be updated, along with the vehi-
cle position, on each successive pass. Using this selective
approach, the number of observations and hence, the size
of the system state, can be kept to a manageable size.

2. THE DYNAMIC SYSTEM MODEL

In order to perform simultaneous localisation and mapping
corrections to the system, both the vehicle response and
external observations must be modelled. For the vehicle, a
simplified coefficient-based dynamical model of the lateral-
directional subsystem was employed. The observations
are represented by grid-points, which approximate the
underlying terrain at each Navigation Cell.



2.1 The Vehicle Model

For many applications of SLAM in the underwater do-
main, the vehicle is represented by a constant velocity or
constant acceleration kinematic model. An initial version
of this work was developed using the same representation,
but the behaviour of the model was found to lack the short-
period response typical of an AUV working at survey speed
(Sgarioto, 2008), say 2.5 to 4.5 knots. This work is based
on a simplification of the full 6 degree-of-freedom model of
the REMUS 100 AUV first published by Prestero (2001)
and extended by Sgarioto (2007) incorporating PID con-
trollers for yaw, pitch and thrust. Since we are interested
in estimating the vehicle’s behaviour in the x–y plane, only
the lateral-directional components are modelled. The dy-
namical subsystem can be expressed in state-space (Healey
and Lienard, 1993) as:

ẋV (t) = f(xV (t), δ(t)) (1)
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Here, the subscript V denotes the vehicle component of the
system. The vehicle state vector xV (t) is composed of the
vehicle coordinates xV and yV , the azimuth angle ψV and
the lateral velocity and yaw rate, vV and rV , respectively.
The control vector δ(t) is composed of a single lateral
control fin displacement term δr. The term uV0

represents
the trimmed forward velocity and the constant terms Aij ,
Bi and a, below, are functions of the vehicle hydrodynamic
coefficients Y and N , the inertial tensor I and mass m:
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a = (m− Yv̇)(Izz −Nṙ)−Nv̇Yṙ (5)

In discrete form, the predicted vehicle state at time step
k can be written in terms of the state at [k − 1] and the
sample period ∆t:

xV [k] = f(xV [k − 1], δ[k − 1]) (6)

xV [k] = xV [k − 1] + F23[k − 1]∆t

yV [k] = yV [k − 1]− F13[k − 1]∆t

ψV [k] = ψV [k − 1] + rV [k − 1]∆t

vV [k] = vV [k − 1] +A11vV [k − 1]∆t

+A12rV [k − 1]∆t+B1δr[k − 1]∆t

rV [k] = rV [k − 1] +A21vV [k − 1]∆t

+A22rV [k − 1]∆t+B2δr[k − 1]∆t

(7)

Here, the parameters are:

F13[k] = −uV0
sinψV [k]− vV [k] cosψV [k]

F23[k] = uV0
cosψV [k]− vV [k] sinψV [k]

In order to incorporate the vehicle model into an Extended
Kalman Filter, the vehicle system Jacobians need to be
recalculated at each step. For the vehicle state and con-
trol components, the Jacobians ∇V f [k] and ∇δf [k] of f
evaluated at [k − 1] are derived:

∇V f [k] = I(5) + F[k − 1]∆t (8)

∇δf [k] = [ 0 0 0 ∆t(B1) ∆t(B2) ]
T

(9)

where I(5) is the 5×5 identity matrix and:

F[k] =


0 0 F13[k] F14[k] 0
0 0 F23[k] F24[k] 0
0 0 0 0 1
0 0 0 A11 A12

0 0 0 A21 A22

 (10)

The remaining parameters are:

F14[k] = − sinψV [k]

F24[k] = cosψV [k]

2.2 The Observation Model

Visual SLAM relies on the ability of the image processing
component to extract and uniquely identify features within
each snapshot of the terrain. Terrain-Relative Navigation
obviates this process, although it has its own set of
challenges. The main drawback in relying on the 2D
bathymetric sonar for navigation is that every unique
observation, or sonar return, is made only once as the
vehicle passes. As a consequence, the vehicle must pass
the same region multiple times in order to make successive
updates to the original observations and effectively “close
the loop”. The other restriction is that patches of terrain
are required to be approximated from a sequence of 2D
scans in order to conduct a correlation of the terrain in
both x and y coordinates (Roman, 2005). This means
the observations can only be integrated into the system
after the terrain patch is complete and the vehicle has
left the Navigation Cell region. At the point when this
occurs, the observations have an x and y offset from
the vehicle location. In the formulation presented, the
observations being referred to are actually the points
of a gridded approximation to the terrain patch. This
representation was chosen primarily because: (i) It allows
for the observations to be directly incorporated into the
filter, thereby facilitating correction to the vehicle’s map
upon each crossing and; (ii) It provides a very simple
approximation which is computationally straightforward
to interpolate and subsequently correlate. The advantages
and disadvantages are further discussed in Section 5. Thus,
the observation model h is posed in terms of the relative
position of grid-points, zx,y:

z[k] = h(x[k]) (11)



[
zx[k]
zy[k]

]
=

[
xV [k]− xi[k]
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]
(12)

Here, xi, yi are the grid-point coordinates. Recall that we
are only interested in estimating the vehicle’s behaviour
in the x–y plane, so the vehicle depth is not incorporated.
The Jacobians of the vehicle and observation functions
∇V h[k] and ∇ih[k] are:

∇V h[k] =

[
1 0 0 0 0
0 1 0 0 0

]
(13)

∇ih[k] =

[
−1 0

0 −1

]
(14)

The addition of new observations requires an initialisation
function g, which provides an estimate of the absolute
grid-point positions, based on the vehicle state and the
relative grid-point positions:

xi[k] = g(xV [k], z[k]) (15)

[
xi[k]
yi[k]

]
=

[
xV [k]− zx[k]
yV [k]− zy[k]

]
(16)

The Jacobians of the initialisation functions ∇V g[k] and
∇ig[k] are identical to their observation counterparts.

3. SYSTEM DEFINITION

For integration into the SLAM formulation, the complete
system state is composed of the vehicle state (6), plus a
set of observation states (11):

xT [k] =
[
xV

T [k] z1
T [k] z2

T [k] · · · zO
T [k]

]
(17)

For O observation points.

3.1 SLAM Formulation

The model of the vehicle is written in discrete form as:

xV [k] = f(xV [k − 1], δ[k − 1]) + vV [k] (18)

Where the state and control terms are defined above and
the term vV [k] represents the system noise and can also
accommodate uncertainties in the model itself. The state
estimate and control input, are used to generate a prior
state estimate. When observations are received by the filter
they are fused to produce the posterior estimate. The prior
estimate of the vehicle state is expressed as the model
evolution of the previous vehicle state estimate and the
current control input:

x̂−
V [k] = x̂V [k|k − 1] = f(x̂+

V [k − 1], δ[k − 1]) (19)

The grid-points (landmarks) derived from the terrain are
assumed to be static, so the terrain model is simple:

xi[k] = xi[k − 1] (20)

So is the prior estimate of each grid-point:

x̂−
i [k] = x̂i[k|k − 1] = x̂+

i [k − 1] (21)

The sensor (observation) model is expressed as a function
of the system state:

z[k] = h(x[k]) + w[k] (22)

Here, the observation noise is characterised by the term
w[k]. The prior estimate of the observations follows:

ẑ−[k] = ẑ[k|k − 1] = h(x̂−[k]) (23)

The state and observation noise are uncorrelated with zero
mean and have covariances:

E[v[k]vT [k]] = Q[k] (24)

E[w[k]wT [k]] = R[k] (25)

Similarly, uncertainty in the control inputs can be pre-
scribed:

E[δ[k]δT [k]] = ∆[k] (26)

The Extended Kalman Filter linearises the propagation of
uncertainty about the current state estimate in order to
predict the state covariance:

P−[k] = ∇xf [k]P+[k − 1]∇xfT [k]

+∇δf [k]∆[k]∇δfT [k] + Q[k]
(27)

The innovation covariance can then be computed from the
state covariance prediction:

S[k] = ∇xh[k]P−[k]∇xhT [k] + R[k] (28)

The innovations measure the difference between actual
observations and those predicted:

υ[k] = z[k]− ẑ−[k] (29)

Finally, the posterior estimate of both state and covariance
can be determined through an update of the Kalman
Filter:

x̂+[k] = x̂−[k] + W[k]ν[k] (30)

P+[k] = P−[k]−W[k]S[k]WT [k] (31)

Where the Kalman Gain is:

W[k] = P−[k]∇xhT [k]S−1[k] (32)

When new features added to the state, its covariance
matrix expands:

P+[k] = ∇xg[k]P∗[k]∇xgT [k] (33)

Where the prior state covariance matrix P∗[k] has been
augmented with the new observation covariance, R[k].



3.2 Navigation Cell Correlation

As with visual sensors such as still and video cameras,
the micro-bathymetric sonar has the potential to collect
a vast amount of data, in the millions. The sonar returns
are susceptible to artifacts and shadowing, but they have
many advantages over images, including the measurement
of actual seafloor depth derived from range and beam
angle as well as penetration through the water medium in
areas of low visibility. In order to integrate the bathymetric
observations into a filter, an approach is necessary to cope
with the large amount of data. One such approach, which
utilises relative vehicle pose measurements in a delayed
state form of the Kalman Filter, has made significant
progress in reducing the computational burden (Eustice
et al., 2004; Leonard et al., 2002). An alternative approach
is to reduce the data into another form, more suitable
for inclusion in the system state. For this research, it was
decided to employ the latter approach, due to its simplic-
ity, and its ability to update the terrain model upon each
successive pass. The specific terrain matching algorithm
selected follows the correlation method used by Nygren
(2005). In that project, the terrain observations were re-
duced to a grid and then compared to a prior map of the
region, in order to find the vehicle’s absolute position on
the map. Here we are performing essentially the same cor-
relation, but relative to a grid constructed from previous
observations. First, the patch of sonar data - comprised of
a sequence of scans, each scan consisting of a set of (range,
beam angle) sonar returns - is transformed into Cartesian
space and then approximated at points on a uniform grid.
This grid must have the same spacing and orientation as
the one already stored to facilitate correlation operations
between the terrain models as described next. Once the
grid has been constructed, it is compared with the previous
version using a sum of squared differences in the spatial
domain, by incrementing the x and y offset by one grid
spacing at a time. For each increment, the correlation
function is calculated and when complete, the true offset
is determined from the minimum correlation sum, or that
which resulted in the best match. The correlation sum
must be weighted, since the number of data points for each
offset may not be the same and an offset corresponding to a
large overlap should be favoured over that with a smaller
overlap, but the same unweighted correlation sum. It is
also judicious to restrict the range of offsets examined to
minimise the possibility of false association with a small
number of grid-points. The correlation function utilised
has the form:

1

(∆M ×∆N)
2

∆M∑
m=1

∆N∑
n=1

(dm,n[k0]−dm+∆m,n+∆n[k1])2

(34)

For 1 ≤ ∆M ≤ M and 1 ≤ ∆N ≤ N overlapping grid-
points in x and y axes respectively, (zx, zy), where the
total number of observations O = M × N . The terms
dm,n[k0] and dm+∆m,n+∆n[k1] are the vehicle-relative ter-
rain depths for the grid-points at time-steps k0 and k1 re-
spectively. The Navigation Cell offsets for each grid-point
are 0 ≤ ∆m < M and 0 ≤ ∆n < N . Here the weighting
is equal to the inverse of the total number of overlapping

points squared. Note that this initial formulation will only
identify and correct for an offset translation and not an
offset rotation; the vehicle’s heading remains uncorrected.
Once tested in the field, it is planned to further refine the
program by employing an Iterative Closest Point (ICP)
algorithm instead, which is capable of correlating both the
position and heading.

3.3 Mission Control

For many AUV’s, such as the REMUS-100, the mission
plan is typically defined by a sequence of waypoints for
the vehicle to traverse. For navigational correction using
bathymetric measurements, there are fundamentally two
stages required during a mission: the initial navigation
or collection phase in which any number of Navigation
Cells are compiled and; the observation or correction phase
during which Navigation Cells are revisited and correlated
against. It is possible to implement these stages in several
ways:

(1) Pre-define the Navigation Cells in the mission plan
at points through which the vehicle is programmed
to pass through more than once.

(2) Pre-define Navigation Cells in the mission plan and
if a navigational measure, the vehicle’s positional
uncertainty for example, exceeds some critical value,
allow the vehicle to return to a cell, make a correction
and then resume its mission.

(3) Have the vehicle monitor the terrain variability and
upon exceeding some threshold, establish a Naviga-
tion Cell. Otherwise, proceed as for option (2).

The basic steps pertaining to the first process are illus-
trated schematically in Fig. 1.
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Fig. 1. Mission Control for Pre-defined Navigation Points

The vehicle’s estimated proximity to the centre of ev-
ery Navigation Cell (NavCell) is calculated at each step.
When the vehicle enters an area surrounding any NavCell,
relevant action is taken depending on whether it is the



first pass or a subsequent one. The area is determined
by the lateral range of the sonar at some nominal vehicle
altitude. After the first pass, a sequence of sonar scans is
compiled and filtered to produce a gridded approximation,
the NavCell. The grid-points are stored as observations in
the system state, along with the defining vehicle pose -
that at the vehicle’s point of exit from the NavCell area.
After each successive pass, a similar but temporary grid,
the ObsCell, is produced and aligned with the NavCell,
representing observations within the system state. This
alignment, determined by the correlation function, consti-
tutes the data-association phase, in which each grid-point
observation is either identified with its equivalent in the
system state, or flagged as a new observation. Existing
observations are then updated via equations (28) to (32)
and new ones added with equation (33), effectively increas-
ing the size of the NavCell, under the EKF mechanism.
In the same step, the estimated vehicle pose is updated
through the system state. This updated estimate can then
be accessed by the vehicle controller in order for it to make
corrections to its track.

4. SIMULATION RESULTS

The SLAM formulation developed in previous sections was
applied to the simulation of a bottom-survey mission with
sidescan sonar and possibly bathymetric sonar. In Defence,
such surveys arise in the course of Mine Countermeasure
(MCM) and Rapid Environmental Assessment (REA). In
such applications, it is desirable that the vehicle gather
data as rapidly and accurately as possible. The sonars
perform optimally when the roll angle and yaw rate are
close to zero and as such, it is important that the vehicle
collects data from the terrain in straight, level motion.
Typical mission profiles are therefore comprised of sets of
parallel survey lines. Two approaches were demonstrated:
Pre-defined Navigation Cells without on-the-fly mission
modification by the vehicle and; vehicle-based dynamic
establishment of Navigation Cells and subsequent selection
of cells for revisiting and correction.

4.1 Pre-defined Navigation Cells

An area of terrain was synthetically generated for the
vehicle to traverse and a vehicle mission path constructed
in order to demonstrate the procedure. The sonar model
characteristics approximated those of an Imagenex Model
837B “Delta T” 1.7MHz multibeam profiling sonar, with
120 beams over 120◦ at a frame rate of 10fps. Artificial
Gaussian sensor noise with a variance of 1.0×10−6m2 was
added to the data scanned from the bathymetry as well
as the vehicle’s inertial measurements in order to more
closely mimic the real system. For the simulations, the
vehicle operated at a constant speed of 2.5 knots and a
constant depth, with a nominal altitude of 5.0m, which
provided a swath width of approximately 17.0m.

The system was augmented with additional observations
of heading and yaw rate, which were incorporated into the
Kalman Filter to provide more accurate and representa-
tive estimate. In a real vehicle, these would typically be
provided by the inertial navigation system. The accuracy
associated with those measurements was relatively high:

0.01deg and 0.01degs−1, respectively, resulting in a real-
istic drift of around 0.5% of distance travelled (Roman,
2005).

The vehicle path, pre-defined by waypoints, was con-
structed from parallel survey lines, each with a single
perpendicular cross-line to ensure multiple crossings whilst
achieving an acceptable rate of coverage. An example of
the terrain, the mission waypoints and the vehicle path is
illustrated in Fig. 2. For this mission, the vehicle was first
directed to a point at the far end of the survey area and
then to follow a lawnmower pattern back to the launch
point, periodically crossing over the first transect. Those
crossings define locations at which Navigation cells were
scheduled to be constructed, the expectation being that
NavCells are best created early in the mission, when the
dead-reckoning error is lowest.

Fig. 2. Vehicle Mission Path and Synthetic Terrain

Another factor in determining the location of the Nav-
Cells is that it is desirable for them to be positioned
along straight transects, so that the vehicle will not be
turning when the data for that cell is collected. There
are consequently three NavCells in this mission. In the
correction phase, the NavCells can be approached from
any angle. However, it is more advantageous to approach
along a heading that will maximise the cell overlap - either
perpendicular or preferably parallel to the initial track.
For the mission presented, the ObsCell was created per-
pendicular to the original NavCell, which avoided causing
any modification to the mission path. In this simulation,
no correction was made on the first NavCell crossing;
the resolution of the grid effectively limiting the mini-
mum offset able to be applied. On the second crossing,
a correction offset was applied, prompting the vehicle
controller to regain the correct track. This is shown in
Fig. 3, which displays the the actual and estimated vehicle
track following correction. The three NavCells are depicted
as 10×10 grids, incorporating a colormap of the terrain
altitude underlying each.

A good indication of the error build-up or uncertainty in
the vehicle’s position, and one that can be utilised by the
vehicle’s mission control, is shown in Fig. 4, which graphs
the estimated maximum standard deviation of the vehi-
cle’s position, σV max, derived from the state covariance
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matrix, P+
V , for identical simulations with and without

Navigation Cells. In this case, we can see that the presence
of NavCells has effectively bounded the uncertainty in the
vehicle’s position.
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4.2 Dynamically Established Navigation Cells

The terrain model employed for this simulation was cre-
ated by interpolating real sonar data onto a triangular
mesh. The data was collected from Iron Cove with the Im-
agenex multibeam profiling sonar detailed in the previous
section. Iron Cove has a relatively benign seafloor, save a
trail of sediment mounds along the piles of the overspan-
ning bridge structure. Fig. 5 illustrates the bathymetry
collected. The data was post-processed using the MB-
System (Caress and Chayes, 1995) software to correct for
roll bias and remove erroneous outer-beams. As the data
was collected at a relatively shallow depth from a surface-
vessel mounted sonar and not corrected for the true sound-
speed profile of the water column, each scan has a subtle
curve, rendering individual tracks visible in the gridded
map. However, these were deemed to have little effect on
the behaviour of the navigation algorithm. Likewise, there
are a few “holes” in the map where no data was collected,
which are simply ignored by the simulation model.

Again, a small amount of artificial sensor noise was added
to both the bathymetric and the vehicle’s inertial measure-
ments. Two criteria were defined in order for the vehicle
to make decisions regarding the creation of NavCells and

Fig. 5. Iron Cove Bathymetry

subsequently return to them for correction: A threshold
of the mean terrain variance, σ̄2

T and; a critical value for
the estimated maximum standard deviation, σV max. The
mean terrain variance was calculated over both x and y
directions.

Using a similar methodology for achieving localisation by
executing maximally discriminating actions (Fairfield and
Wettergreen, 2008), the variability of the terrain is contin-
ually assessed from the sonar returns and upon reaching
its threshold, a NavCell is established. The estimated
vehicle state covariance is also monitored continuously. If
the latter exceeds a critical value, the vehicle is given an
opportunity to return to one of the previously established
NavCells. The decision whether to return at all and if so, to
which NavCell could be based on many factors, such as the
variability of each NavCell and their direct distance from
the vehicle. Other factors, such as the orientation of each
NavCell and the current direction of vehicle travel relative
to each could also be considered. If the vehicle does choose
to return to one of the NavCells, a set of new waypoints
is inserted into the mission at the current stage and the
vehicle is commanded to update its path, momentarily
departing the original mission to attempt a correction.
This is accomplished much in the same way that an AUV
would normally surface to obtain a GPS correction and
then resume its mission. First, a breakpoint is placed at
the vehicle’s current position in order to establish a new
track. Then, two waypoints are inserted on either side of
the NavCell, forming a path collinear to the original one.
As discussed previously, this ensures that the vehicle is
aligned with the path in which the NavCell was originally
surveyed, thereby maximising the probability of a success-
ful correlation. A fourth waypoint, placed at a location
along the original mission path, either at or some small
distance prior to the first breakpoint, is also necessary to
avoid any gaps in the survey data. Consequently, the vehi-
cle departs from the original mission to revisit the selected
NavCell, perform a correlation and ideally, navigational
correction, then return to the original track and resume its
mission. Fig. 6 illustrates the augmented vehicle mission
for one scenario. Aside from the set of mission waypoints, a
scenario comprises various parameters for the vehicle and
sensor model, as well as criteria relating to the mission,



including the thresholds for terrain variance and vehicle
uncertainty. For the same scenario, Fig. 7 shows two graphs
of the local terrain variance and vehicle positional uncer-
tainty (estimated maximum standard deviation).
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The vehicle mission in Fig. 6 represents a simple lawn-
mower pattern consisting of a series of parallel North-
South legs progressing in an Easterly direction. Both the
terrain variance and vehicle uncertainty are monitored
throughout, although no NavCells are created and no
modifications to the vehicle mission are made in the vicin-
ity of the waypoints during which the vehicle is expected to

be turning. As the vehicle traverses along its first parallel
N-S leg, it encounters a region of highly varying terrain at
around 250s. The local terrain variance exceeds the pre-
defined threshold of 0.075m2 and a NavCell is created. On
the second parallel N-S leg, at around 420s, the vehicle’s
estimated maximum standard deviation exceeds the pre-
defined threshold of 1.0×10−4m, triggering a break from
the mission to revisit a NavCell for positional correction.
The vehicle, travelling South, then turns and travels back
to the first and only NavCell. Upon crossing the NavCell
at around 590s, a complementary ObsCell is created for
correlation. The offset correction is applied to the vehi-
cle’s estimated position and it then turns once more and
proceeds back to the breakpoint to resume its mission.
This sequence of events occurs several times during the
mission, with a total of 10 NavCells being created and 4
correction revisits executed. In this scenario, the mission
controller was configured to return the vehicle to the
NavCell with the largest variance each time. However, it
would be prudent to prioritise the NavCells according to
a weighted sum of the terrain variance and distance from
the current location, since the further away each NavCell,
the more error that would be accumulated in revisiting it.
The resulting vehicle uncertainty seen in Fig. 7 follows the
familiar sawtooth pattern, which is periodically recovered
to a level below the threshold.

Other parameters associated with the scenario include
a “cooldown” time, which is reset after each positional
correction, in order to prevent the vehicle going into an
infinite mission loop. For example, if the error buildup
during return from a NavCell is sufficient to exceed the
threshold of vehicle uncertainty, which would normally
trigger another revisit, a cooldown period is necessary to
suppress this behaviour. Each time a correction is required,
a pre-defined number of upcoming legs in the mission plan
are also checked for potential crossings of any existing
NavCells. There is less justification in creating a revisit
detour, if the vehicle is soon due to cross a NavCell during
the normal progression of its mission.

Understandably, the success of the approach is dependent
on the nature of the terrain. Some tuning of the grid size
and resolution is required in order to uniquely capture
patches of bathymetry for storage as NavCells. The grid
size is generally determined by the lateral width of the
sonar swath at its current depth, less any outer beams
deemed unreliable. The grid resolution is more difficult
to set, representing a compromise between the minimum
offset correction able to be applied and the acceptable
size of the system state. However, the main advantage
with this approach is the fact that the NavCells and
therefore, the number of observations, are added to the
system parsimoniously - the operator can have a great
deal of control over the size of the system state - so it
is relatively simple to maximise the effectiveness of the
procedure within the bounds of the available computing
memory and processing speed.

5. CONCLUSION

A procedure has been developed for the correction of an
AUV’s estimated position based on the selective establish-
ment of terrain-based Navigation Cells along its mission



path. The system equations have been formulated within a
SLAM framework to make cumulative corrections to both
the vehicle’s position and the Navigation Cells compiled.
These equations were then implemented in a simulation
to demonstrate two possible variants of the approach: One
using pre-defined Navigation Cells and; another which
allowed the vehicle to dynamically establish Navigation
Cells, based on the terrain variability and return to them,
contingent on the dead-reckoning error.

The approach showed promise, particularly in areas where
the terrain variability was sufficiently high. With a number
of pre-defined Navigation Cells, the vehicle’s estimated
maximum position error was successfully reduced. With
dynamically established Navigation Cells, it was possible
to limit the positional error.

In summary, the advantages of such an approach in com-
parison to previous approaches based on Terrain-Relative
Navigation and feature-based SLAM are:

• No prior terrain maps are required, although the
vehicle’s map, once constructed, could be re-used
• More amenable to real-time execution
• Obviates need for feature extraction and subsequent

data-association; grid-points are associated through
correlation
• Navigation Cells are mutable (in the x–y plane) and

updated at each crossing
• Reduced grids are simple to implement and require

less storage
• Grid resolution can be readily adjusted to optimise

performance & storage

Disadvantages include:

• Local knowledge may be required to devise effective
locations for Navigation Cells, if they are to be pre-
defined in the mission plan
• The terrain within Navigation Cells must be suffi-

ciently varying and unique for correlation
• Interpolated grids infer a loss of information from the

raw sonar data from which they were constructed
• The vehicle must pass sufficiently close to each Nav-

igation Cell in order to perform correlation

Work is currently underway to implement the algorithm
on the secondary controller of a REMUS-100 AUV. When
complete, experiments are planned to assess the sensitivity
of the mission-critical parameters to the local bathymetry.
Future work will also explore different representations of
the NavCells, including unstructured grids, as well as
various algorithms for the correlation phase.
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