
Virtual Reality Modelling Language
for Visualisation of Flight Simulations

Roger A. Stuckey, PhD

Air Operations Division
Defence Science and Technology Organisation

506 Lorimer St, Fishermans Bend, Melbourne, VIC 3207
Roger.Stuckey@dsto.defence.gov.au

Abstract. The Virtual Reality Modelling Language (VRML) is used to provide a graphical display for real-time
simulations of helicopters carrying external loads. Following computation of the helicopter load response to a series
of pre-defined control inputs, a script is utilised to generate output in VRML format, suitable for viewing in any one
of the browsers available on the Internet. This file, linked with helicopter, load and terrain models then constitutes a
recreation of the simulation in a virtual world. The language is compact, comprising only the positional and
orientation keys for each body in the scene, as well as the geometric models themselves. Additional detail, such as
background grids, can be created if required, while objects such as patches can be added to indicate load-deviation
angles. The script was developed using quaternion transformations of the helicopter, load, cables and viewpoints in
Cartesian space. Using the External Authoring Interface (EAI), further enhancements to the simulation have also
been implemented. These include a timer function, written in Java, allowing synchronisation across multiple frames
and consequently the facility to display more than one viewpoint at a time. Another Java routine that provides time-
history trace plots along with the simulation has been developed. The tool has proven invaluable in the assessment of
helicopter stability when operating with external loads.

1. INTRODUCTION
The Virtual Reality Modelling Language (VRML) [1]
has been used as a standard for modelling 3D virtual
worlds on the World Wide Web for several years now.
Much of the attention has been in the creation of virtual
worlds, with the aim of building shared communities on
the web. Another area of application has been scientific
visualisation in three dimensions. VRML provides an
ideal environment in which data can be presented,
explored and interacted with beyond many traditional
forms of analysis. Under the Chinook Flight
Operations Task at DSTO, one of the first requirements
was to build a helicopter slung-load dynamic model for
analysis of the dynamic behaviour. The simulation
model was developed in MATLAB [2]; however, that
was found to be inadequate for visualisation of the
resulting response. As a consequence, it was decided to
utilise the Virtual Reality Modelling Language for
graphical presentation of the data.

1.1 Brief History of VRML
Following the First International Conference on the web
in 1994, Mark Pesce and Tony Parisi set out to
prescribe a standardised language for the description of
3D scenes on the web. The VRML standard was to be
open, platform independent, and it was to support 3D
multimedia and shared virtual worlds on the Internet.
Soon after, members from the VRML mailing list,
including Rikk Carey and Gavin Bell, formalised the
first draft of the language specification. VRML 1.0 was
based on the Open Inventor ASCII file format,
developed by Silicon Graphics Inc. (SGI), and
supported complete descriptions of scenes with
geometry, lighting, materials and a user interface, as

well as the necessary networking extensions. In 1995,
SGI released WebSpace Navigator, the first VRML
browser, and soon after, Intervista released WorldView
for Windows. Also in that year, several of the mailing
list’s leading experts formed a subgroup, named the
VRML Architecture Group (VAG), whose purpose was
to develop a scalable, fully interactive standard for 3D
shared worlds. By mid 1996, the official VRML 2.0
specification was published, and by the end of 1997 it
had been standardised by the International Standards
Organisation as VRML97 (ISO/IEC 14772-1:1997).

1.2 Issues with Simulation Model Analysis
In the field of simulation, system hardware can be
costly, and the visualisation software is often
commercial, using proprietary Application
Programming Interfaces (APIs) and file formats. These
aspects can make it difficult to view simulations on
typical desktop computers, let alone share the
information across a network on different platforms.

The Virtual Reality Modelling Language is an open,
standardised file interchange format that supports
scripting in other standard languages such as Java and
Javascript. VRML browsers (both plug-ins and
standalone versions) are freely available on the Internet
for a wide range of platforms, and they typically include
many features such as real-time playback, advanced
modelling and rendering capabilities including spline
and NURBS objects, lighting effects, varying level-of-
detail and anti-aliasing. Moreover, they have the
advantage of being able to be shared across the Internet
easily, opening up possibilities for the dissemination of
graphical information. VRML files can be hosted on
any web server for transfer and presentation on a client

machine. They are also compact and modular, allowing
for rapid, efficient download of the virtual world with
only those constituents required at any one time.

HSLSIM was written in MATLAB, a high-performance
numerical computing environment which is built around
matrix mathematics, and therefore amenable to dynamic
modelling and simulation work. MATLAB also
provides an ideal workplace in which various analyses
can be conducted following the simulation itself. The
simulation code is a complex multi-body solution based
on the formulation developed by Cicolani et al. [4]. In
this formulation, the general system equations of
motion are obtained from the Newton-Euler equations
in terms of generalised coordinates and velocities.
Following the explicit constraint method, which utilises
d’Alembert’s principle, the system is partitioned into
coordinates such that the motion due to cable stretching
is separated from that due to rigid-body, coupled
dynamics. As a consequence, the constraint forces
appear explicitly and a solution to the resultant
generalised accelerations is determined by assuming a
simple spring model for each cable.

2. SIMULATION IN VRML
The facility to generate VRML scenes from simulation
data was developed in order to provide a graphical
display of the aircraft response. It must be understood,
therefore, that the simulation actually takes place prior
to display in the VRML browser. For this project, the
simulation is run within the MATLAB numerical
computing environment, using a package named
Helicopter Slung-Load Simulation (HSLSIM) [3].
Figure 2.1 outlines the basic scheme employed. The
MATLAB simulation is able to utilise a high-fidelity
helicopter model, ROTORGEN, which is written in
Fortran. A supplementary script, HSLVRML, is then
executed to output the simulation data to a file in
VRML format, which can be hosted on the web and
viewed with an appropriate browser. It is also possible
to link the VRML simulation to Java applets via the
External Authoring Interface (EAI) in order to provide
additional information and/or functionality. One such
applet, VRMLTRACE, generates a set of time-histories
for arbitrary variables of the simulation in a
neighbouring frame of the web browser. These
components will be discussed in further detail below.

A higher fidelity model than the one used initially was
also integrated in the simulation via a MATLAB
External (MEX) interface. ROTORGEN was
developed by Heffley [5] for the US Army
Aeroflightdynamics Directorate under NASA contract
to Hoh Aeronautics Inc. It is described as a “minimal-
complexity generic rotorcraft model” intended for
manned simulation of large military helicopters and, in
particular, the CH-47D Chinook tandem rotor
helicopter.

Simulation
HSLSIM

Output script
HSLVRML VRML Plugin

Helicopter model
ROTORGEN

External Interface
VRMLTRACE

MATLAB Web Browser

WRL File

The simulation model is first initialised with a set of
flight conditions and given a pre-determined sequence
of control inputs to be used in the computation of a
response. The model is then trimmed according to the
specified flight conditions until an equilibrium state is
reached, and then integrated over the time range to
produce a set of simulation data. The data comprises
the helicopter and load positions, orientations, the
control inputs and geometric information regarding the
helicopter load configuration. As for most aeronautical
systems [6], the positions are specified in right-handed
Cartesian axes (with positive-z downward) and the
orientations in Euler angles. Figure 2.1: VRML generation scheme

Once the data have been collected, it is then passed to
the output script HSLVRML for processing and
generation of the VRML file. There are a number of
transformations necessary to convert the position and
orientation data for helicopter and load into a form
suitable for inclusion in the VMRL model. The primary
transformation is that from Euler orientation to
quaternion orientation, the latter being represented by a
unit vector axis xi + yj + zk, plus a rotation angle α
about that axis. To convert Euler angles to quaternions,
the following expressions [7] are used:

2.1 Calculation of Simulation Data
The Helicopter Slung-Load Simulation package
HSLSIM was developed at DSTO as a fundamental part
of the Chinook Flight Operations Task sponsored by the
Australian Army. In the past, the operations of
helicopters carrying externally slung loads has often
been limited and, in some cases, seriously hindered by
stability and control problems. A program was
consequently initiated within the Defence Science and
Technology Organisation (DSTO) to use computer
modelling and simulation to assist in defining the
operational limits of the Australian Army Chinook
CH-47D helicopter when carrying slung loads. The
first phase in this program entailed the development of
a helicopter slung-load model for simulation and
analysis in order to provide a better understanding of
the system dynamics and various effects involved.

)cos()sin()sin()sin()cos()cos(

)cos()sin()cos()sin()cos()sin(

)cos()cos()sin()sin()sin()cos(

)cos()cos()cos()sin()sin()sin(

2222224

2222223

2222222

2222221

ϕθφϕθφ

ϕθφϕθφ

ϕθφϕθφ

ϕθφϕθφ

−=

+=

+−=

+=

q

q

q

q

Then, to convert from quaternions to a rotation axis and
angle, the following are used:

)sin(/

)sin(/

)sin(/

)(cos2

24

23

22

1
1

α

α

α
α

qz

qy

qx

q

=

=

=

= −

Similar transformations are also needed for the rotors
and the sling cables, both of which are transformed
about the helicopter body-axes before transformation to
inertial axes using the equations above. For example,
the rotors are rotated about their own axes according to
the current time-step, then translated to their positions
up on the forward and aft helicopter hubs, and then they
are rotated and translated along with the helicopter.
Calculation of the position and orientation for each of
the sling cables is somewhat more involved, however.
It requires that the positions of the attachment points
first be determined from the helicopter and load, and
then that the equivalent quaternion rotations be
calculated for cylinder nodes starting from their default
orientations. Another set of coordinates that are
required for the VRML model are the vertices of the
load-displacement patch, a semi-transparent arc
illustrating the deviation of the load from its trim
location relative to the helicopter. As with all of the
above data, these transformations must be performed
for each time step, since they all depend on the position
and orientation of the helicopter and load, which
changes throughout the simulation.

In addition to the transformations of the geometric
nodes, several additional sets of data are required for
the moving viewpoints in the VRML world. The
viewpoints include typical orthographic perspectives of
User defined, Side, Front, Top and Behind, as well as
Fixed-Inertial, a Zoom/Pan view, Fixed-Aircraft (user
defined) and Fixed-Aircraft (downward looking). The
orthographic viewpoints remain static in orientation and
positionally fixed relative to the helicopter throughout
the simulation. Orientation of the dynamic viewpoints,
such as the Fixed-Inertial view, must be recalculated for
each time step, as with the helicopter and load. Both
the Fixed-Inertial and Zoom/Pan views are aligned
along the vector drawn from a fixed position specified
in inertial axes to the helicopter’s origin. While the
Fixed-Inertial view remains fixed at the location
specified, the Zoom/Pan view maintains a constant
absolute distance, typically much closer, from the
helicopter. The Fixed-Aircraft views undergo the same

transformations as the helicopter, with the addition of a
rotation and translation applied to each beforehand.

The last set of nodes that are created are the gridlines
and ground surface, the dimensions of which are
calculated to suit each simulation. The grid is created
purely for reference information and covers each wall
of a rectangular box shape, where the size of the box is
equal to the domain of the helicopter and load
movement, plus some arbitrary buffer.

After all of these nodes have been output to file,
HSLVRML adds the background information, some
lights, a set of default navigation information and the
routes necessary for animation. As a final step, the file
can be compressed into a compact binary format using
GZIP [8], which is still able to be read by the VRML
browser, but small enough for fast transmission over the
Internet.

2.2 Structure of VRML Model
As stated in the Virtual Reality Modelling Language
Functional Specification [9], “A VRML file consists of
the following major functional components: the header,
the scene graph, the prototypes, and event routing. The
contents of this file are processed for presentation and
interaction by a program known as a browser.”

The file is typically formatted in UTF-8 clear text
encoding, also known as Unicode, which is defined in
the header. The scene graph contains nodes used in the
model. Nodes are abstractions of various real-world
objects and concepts, such as boxes, interpolators,
lights and material descriptions, organised into a
transformation hierarchy. Prototypes define new node
types in terms of already defined (built-in or
prototyped) node types. They can be included in the
file in which they are used or defined externally. The
scene graph also includes routes, which define how and
when events are propagated through the model to affect
other nodes. When generated, these events are sent to
their routed destinations in time order and processed. It
is the execution engine that processes events, reads and
edits the route graph and makes changes to the
transform hierarchy.

Figure 2.2 illustrates the conceptual execution model
utilised in the simulations.

Scene Graph Execution EngineRoute
Graph

Time
Sensor

Position
Interpolator

Orientation
Interpolator

Touch
Sensor

Geometry

Transform

Figure 2.2: The conceptual VRML execution model

The general order in which execution takes place is as
follows:

1. User clicks on a Touch Sensor, sending a touchTime
event to the Time Sensor startTime.

2. The Time Sensor becomes active and starts
generating continuous events, including
fraction_changed - a variable in the closed interval
[0,1] indicating the completed fraction of the current
cycle - which is sent to the set_fraction events of
various Position and Orientation Interpolators.

3. The value_changed events of those Position and
Orientation Interpolators are sent to the translation
and rotation fields, respectively, of the
corresponding Transforms.

4. Any geometries within the Transforms undergo
translation and rotation according to the values set.

5. Execution continues with steps 2 through 4,
repeated until the Time Sensor time reaches its
cycleInterval, upon which it becomes inactive and
the event clock is stopped.

The browser takes care of the interpretation, execution
and presentation of the VRML file, and facilitates
navigation through the virtual world as well as
interaction from the user. Most importantly, perhaps,
the browser controls the passage of time in a world
through Time Sensors and typically the times generated
will approximate “real” time. This necessitates the use
of Interpolators to calculate the state of the Transform
nodes at any one time, since no assumptions can be
made about how often a Time Sensor will generate
events. Interpolators are designed for linear key-framed
animation, which means that, given a scalar position
within the list of keys, they will interpolate within the
list of keyValues to return a corresponding value. For
the helicopter slung load simulation, these include
various Position and Orientation Interpolators for all
moving objects in the scene.

The physical format of the VRML simulation model
essentially comprises two parts: the main file that
details the virtual world, and a group of external
prototype files containing the geometric models. These

prototypes include the helicopter and loads, which are
chosen from a set of models depending on the
configuration and do not change during the simulation.
Both helicopter and load models are comprised mainly
of Transforms, simple shape nodes, such as Boxes, and
more complex ones, such as IndexedFaceSets. An
ImageTexture node within the Shape node of the
Helicopter and Load may also contain a URL link to an
image that is mapped on to the parent Shape. If this is
omitted, the Appearance of the Shape is set by the
Material node instead. Contained within the main
VRML file are references to those external nodes, the
Time and Touch Sensors, Interpolator nodes, additional
geometric model nodes, Viewpoints, the simulation
grid, background, lighting and navigation information,
as well as the route graph. Figure 2.3 outlines the basic
structure of the VRML model.

Figure 2.3: Transform hierarchy of VRML model

The TimeSensor is listed first, and is instantiated with a
cycleInterval equal to the total simulation time in
seconds. The remaining parameters, such as the
startTime and loop, are left at their default values.

Next are the Transform nodes that parent the helicopter,
rotors, cables and loads, as well as their respective
Translation and Orientation Interpolators. Each
Transform node has a set of children, as well as a
rotation, scale and orientation defined by vectors. The
HelicopterSimulation Transform contains several
children, including the helicopter and rotor
transformation hierarchy. For the helicopter, a node is
created by reference to an external prototype, declared
at the start of the file in an EXTERNPROTO field. A

TouchSensor node renders all geometric nodes within
the same Transform sensitive to activation from user
input, such as a mouse button. When the mouse button
is pressed and released over either the helicopter or
rotors, the TouchSensor generates two isActive events
and a touchTime event. In addition to the geometric
helicopter node, an OrientationInterpolator node and
PositionInterpolator node are grouped within the
Transform. It is not necessary that they be grouped in
this way, since the Route Graph independently defines
all interaction in the virtual world, but is done so for
clarity. Both Interpolators define an array of scalar
keys and an array of vector keyValues - the orientation
and position at each key.

The FwdRotorSimulation and AftRotorSimulation
constitute two more Transforms within the
HelicopterSimulation Transform, and each holds a
further Transform of its own, as well as an
OrientationInterpolator. There are two successive
Transforms in this case, so as to effect a constant
rotation rate about one axis - the rotor hub - and then
another rotation and translation to move the rotor to its
position on the helicopter. Within the second
Transform lie the geometric rotor nodes, comprised,
once again, of simple shape objects such as Cylinders
and IndexedFaceSets.

The CableSimulation and LoadSimulation nodes are
defined outside the main HelicopterSimulation
Transform, but could just as easily have been defined
within. They are separate here because their positions
and orientations are calculated in inertial axes, as
opposed to helicopter axes, and so their motion is
absolute rather than relative. There are actually several
Cable nodes in the model shown, although only one has
been included in the hierarchy, since their structure is
identical. Much like the helicopter, they contain further
Transform nodes, Interpolator nodes and geometric
nodes. The CableSimulation includes the addition of a
PositionInterpolator for the changing scale, or
stretching of the cable. The LoadSimulation also has a
TouchSensor node, the same as that in the
HelicopterSimulation Transform. Both TouchSensors
are routed to the TimeSensor, so that either can start the
simulation.

A series of Transforms containing the various
Viewpoints follow, though only one is listed in the
figure. These consist of a Viewpoint node, with
fieldOfView, orientation, position and description
fields, and an OrientationInterpolator. Some
viewpoints, such as the Fixed-Aircraft, also include a
PositionInterpolator.

Two transforms for the Ground and Grid nodes are
next. Only one of the six similar Grid nodes is listed.
The Ground is constructed from an IndexedFaceSet,
while each of the Grid faces is built from an
IndexedLineSet.

Last in the list are the Background, DirectionalLight
and NavigationInfo nodes for the virtual world. The

Background node has a number of fields including the
groundAngle, groundColor, skyAngle and skyColor
values. The DirectionalLight node has an
ambientIntensity, color, direction and intensity among
others. The NavigationInfo node includes a headlight,
speed and type field. Each of the different Viewpoints
is listed in the type field for easy navigation.

Apart from the external prototype declarations at the
start of the file, the only other set of semantics not
included in the above diagram are the routes. Routes
are not nodes, but are construct statements establishing
event paths between nodes. They may be established
only from eventOut fields to eventIn fields, and the
types of the eventIn and the eventOut must match
exactly. As an example, the route path for the
helicopter’s rotation and translation is constructed with
the following code:

ROUTE HClick.touchTime TO TimeS.startTime

ROUTE TimeS.fraction_changed TO HRot.set_fraction

ROUTE TimeS.fraction_changed TO HTrans.set_fraction

ROUTE HRot.value_changed TO HSim.rotation

ROUTE HTrans.value_changed TO HSim.translation
Route statements can either appear at the top
hierarchical level of the VRML file, in a prototype
definition, or inside a node wherever fields may appear.

3. EXTENDING THE SIMULATION
Some time after the VRML script was written, a few
enhancements were desired to improve the functionality
and provide more information during the simulation
replay. Primarily, these included the ability to view
several frames at once, and the display of other system
variables. The first enhancement would allow for either
different simulations to be run concurrently, or different
views of the same simulation to be displayed at the
same time. The second would provide indication of
other important variables, not shown in the virtual
world, such as the control inputs driving the helicopter
response.

Both of these enhancements were made possible
through using the External Authoring Interface (EAI)
and the Java Virtual Machine [10]. The EAI is a
proposed Informative Annex to the VRML97
specification and currently the most effective way to
incorporate additional media components into the
display.

3.1 Synchronising across Frames
The problem of synchronising multiple frames - each
containing VRML modes - within the web browser was
reasonably straight forward, although it did require the
creation of a supplementary VRML file containing
another TimeSensor node. This timer is placed in a
frame of zero size, since there’s nothing to display, and
it runs continuously. The Java applet accesses the
TimeSensor nodes from the timer, and the VRML

simulations, as well as references to their eventOut and
eventIn fields, respectively. It essentially routes them
together, and sets the startTime of both dormant
TimeSensor nodes in the VRML simulations to the time
of the already running TimeSensor node in the timer,
upon activation of a button widget. This starts the
simulations. However, since they are still both
internally routed to their own TimeSensors, they will
only remain synchronised if the browser keeps both
streams running at the same speed. For most
applications, particularly when the same or similar
models are being run, this has shown to be sufficient.

Figure 3.1 shows a screen-captured image of the web
browser with two simulations running synchronously.
The simulations demonstrated the effect of sling
configuration on the helicopter slung-load stability [11].

Figure 3.1: Synchronised simulation models

3.2 Displaying Additional Variables
The Java implementation of an additional display was
somewhat more detailed, but relied on a similar
methodology to that applied in the frame
synchronisation case. Two frames are employed in this
enhancement, with the VRML simulation in one and a
set of moving trace plots in the other. Once again, a
separate, individual TimeSensor node is utilised to keep
time in both frames. However, the Java applet also
accesses those nodes whose values are to be displayed
on each of the trace plots. For variables not used in the
simulation display, such as the control positions, this
necessitates the inclusion of additional dummy nodes in
the model. In this case, four ScalarInterpolator nodes
have been added - one for each of the four helicopter

controls. Also, four routes from the local TimeSensor
to each of the ScalarInterpolators are necessary in order
for them to keep time with the rest of the VRML model.
Now the local TimeSensor is activated via the
independent TimeSensor upon button press, and the
Java applet receives eventOut values from the
ScalarInterpolator nodes as the time proceeds. In a
similar manner to the case above, each trace and the
VRML simulation are not truly synchronised, since they
all run on different threads. This can be noticeable for
high frame rates or when there is a large amount of data
to plot, but is generally not a problem.

Figure 3.2 illustrates the web browser with a simulation
and Java display running.

Figure 3.2: Simulation and variable trace plots

4. SCOPE FOR FURTHER DEVELOPMENT
There is considerable scope for further development in
the visualisation of simulations using VRML. One idea
is to make the output script software independent, since
there is no real need to have it run from within
MATLAB. This requires rewriting the code in an open
standard language, for example Java or Perl/Tk, that
can be run on a wide range of platforms. Furthermore,
if the format of the input data was standardised, or even
generalised, then output from other simulation
programs could be processed to return a VRML file.

The thought of running the actual simulation inside a
VRML model using scripting is feasible but not
practicable in a real-world sense. Simulation models
are typically very complex and incorporate a significant
proportion of legacy code written in multiple languages,
and the VRML paradigm is too restrictive to manage

such programs. VRML as a standard is also quite
immature, and for all of its strengths, it still lacks in
functionality and extensibility. Fortunately a new
standard currently in development, named X3D [12], is
addressing those very issues, although such a solution
would never be able to compete with dedicated
simulation programs that use low-level APIs for display
[13]. If there is a future in using VRML or X3D in
simulation, it will be as a lightweight visualisation tool,
with scope for interaction and collaboration across
networks.

5. CONCLUSION
The Virtual Reality Modelling Language has proven to
be invaluable in the visualisation and analysis of
helicopter slung-load simulations. Under the associated
task at DSTO, a methodology has been developed and
the software written to generate VRML models from
flight data, allowing the simulation to be viewed on the
Internet by anyone with a freely available browser
installed.

The VRML model has also been extended to display
simultaneous simulations or additional data sets during
replay. Even with the added capability, the
requirements are minimal for viewing the VRML
simulation, and can be done using many of the
computer platforms in common use today.

REFERENCES

1. Carey, R. & Bell, G (1997) “The Annotated VRML 2.0
Reference Manual”, Addison-Wesley, Reading
Massachusetts.

 http://www.web3d.org/resources/vrml_ref_manual/
Book.html

2. The MathWorks, Inc. (2000) “MATLAB The Language
of Technical Computing. Using MATLAB Version 6”,
The Mathworks, Natick, MA.

 http://www.mathworks.com/
3. Stuckey, R.A. (2001) “Mathematical Modelling of

Helicopter Slung-Load Systems”, DSTO Technical
Report, TR-1257, Dec.

 http://www.dsto.defence.gov.au/corporate/reports/
DSTO-TR-1257.pdf

4 . Cicolani, L. and Kanning, G. (1992) “Equations of
Motion of Slung-load Systems, Including Multilift
Systems”, NASA Technical Paper TP-3280, Ames
Research Center, Nov.

5 . Heffley, R. (1997) “ROTORGEN Minimal-Complexity
Simulator Math Model with Application to Cargo
Helicopters”, NASA Contractor Report CR-196705 Hoh
Aeronautics, Inc., Lomita, CA., Mar.

6. ANSI/AIAA (1992) “Recommended Practice for
Atmospheric and Space Flight Vehicle Coordinate
Systems”, ANSI/AIAA R-004-1992, American Institute
of Aeronautics and Astronautics; American National
Standards Institute.

 http://www.aiaa.org/
7. Shoemake, K. (1985) "Animating Rotation with

Quaternion Curves" Association for Computing
Machinery (ACM) SIGGRAPH Computer Graphics,
Proceedings of the 12th Annual Conference on Computer

Graphics and Interactive Techniques, Vol. 19 Issue 3,
Jul., pp. 245-254.

 http://www.acm.org/
8. Deutsch, P. (1996) “DEFLATE Compressed Data Format

Specification Version 1.3” and “GZIP File Format
Specification Version 4.3”, Internet Corporation for
Assigned Names and Numbers (ICANN) InterNIC Request
For Comments RFC-1951 & 1952.

 http://www.gzip.org/
9. ISO/IEC (1996) “The Virtual Reality Modeling Language

(VRML) - Parts 1-2: Functional Specification and UTF-8
Encoding and; External Authoring Interface. International
Standard”, ISO/IEC 14772-1:1997.

 http://www.web3d.org/technicalinfo/specifications/vrml97
10. Sun Microsystems, Inc. “JavaTM 2 Platform, Standard

Edition, V1.4.0 API Specification” Sun Microsystems,
Inc., Palo Alto, CA.

 http://java.sun.com/j2se/1.4/docs/api/index.html
11. Stuckey, R.A. (2000) “Dynamic Simulation of the CH-

47D Helicopter and Externally Slung Boat” American
Helicopter Society (AHS), Proceedings of the 3rd
Australia Pacific Vertiflite Conference on Helicopter
Technology, Jul.

12. Web3D X3D Task Group (2002) “Extensible 3D (X3D)
Parts 1-3: Architecture and Base Components;
Application Programmer Interfaces and; Data Encodings.
International Standard” Draft Specification, Web3D
Consortium, Feb.

 http://www.web3d.org/TaskGroups/x3d/specification/
13. Kelty, L., Beckett, P. & Zalcman, L. (1999) “Desktop

Simulation” SimTecT99 Conference Proceedings, Mar.
 http://www.cse.rmit.edu.au/simtect/1999/papers/073.doc

http://www.web3d.org/resources/vrml_ref_manual/�Book.html
http://www.web3d.org/resources/vrml_ref_manual/�Book.html
http://www.mathworks.com/
http://www.dsto.defence.gov.au/corporate/reports/�DSTO-TR-1257.pdf
http://www.dsto.defence.gov.au/corporate/reports/�DSTO-TR-1257.pdf
http://www.aiaa.org/
http://www.acm.org/
http://www.gzip.org/
http://www.web3d.org/technicalinfo/specifications/vrml97/
http://java.sun.com/j2se/1.4/docs/api/index.html
http://www.web3d.org/TaskGroups/x3d/specification/
http://www.cse.rmit.edu.au/simtect/1999/papers/073.doc

	INTRODUCTION
	Brief History of VRML
	Issues with Simulation Model Analysis

	SIMULATION IN VRML
	Calculation of Simulation Data
	Structure of VRML Model

	EXTENDING THE SIMULATION
	Synchronising across Frames
	Displaying Additional Variables

	SCOPE FOR FURTHER DEVELOPMENT
	CONCLUSION
	REFERENCES

