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Abstract.  The Virtual Reality Modelling Language (VRML) is used to provide a graphical display for real-time 
simulations of helicopters carrying external loads.  Following computation of the helicopter load response to a series 
of pre-defined control inputs, a script is utilised to generate output in VRML format, suitable for viewing in any one 
of the browsers available on the Internet.  This file, linked with helicopter, load and terrain models then constitutes a 
recreation of the simulation in a virtual world.  The language is compact, comprising only the positional and 
orientation keys for each body in the scene, as well as the geometric models themselves.  Additional detail, such as 
background grids, can be created if required, while objects such as patches can be added to indicate load-deviation 
angles.  The script was developed using quaternion transformations of the helicopter, load, cables and viewpoints in 
Cartesian space.  Using the External Authoring Interface (EAI), further enhancements to the simulation have also 
been implemented.  These include a timer function, written in Java, allowing synchronisation across multiple frames 
and consequently the facility to display more than one viewpoint at a time.  Another Java routine that provides time-
history trace plots along with the simulation has been developed.  The tool has proven invaluable in the assessment of 
helicopter stability when operating with external loads. 

1. INTRODUCTION 
The Virtual Reality Modelling Language (VRML) [1] 
has been used as a standard for modelling 3D virtual 
worlds on the World Wide Web for several years now.  
Much of the attention has been in the creation of virtual 
worlds, with the aim of building shared communities on 
the web.  Another area of application has been scientific 
visualisation in three dimensions.  VRML provides an 
ideal environment in which data can be presented, 
explored and interacted with beyond many traditional 
forms of analysis.  Under the Chinook Flight 
Operations Task at DSTO, one of the first requirements 
was to build a helicopter slung-load dynamic model for 
analysis of the dynamic behaviour.  The simulation 
model was developed in MATLAB [2]; however, that 
was found to be inadequate for visualisation of the 
resulting response.  As a consequence, it was decided to 
utilise the Virtual Reality Modelling Language for 
graphical presentation of the data. 

1.1 Brief History of VRML 
Following the First International Conference on the web 
in 1994, Mark Pesce and Tony Parisi set out to 
prescribe a standardised language for the description of 
3D scenes on the web.  The VRML standard was to be 
open, platform independent, and it was to support 3D 
multimedia and shared virtual worlds on the Internet.  
Soon after, members from the VRML mailing list, 
including Rikk Carey and Gavin Bell, formalised the 
first draft of the language specification.  VRML 1.0 was 
based on the Open Inventor ASCII file format, 
developed by Silicon Graphics Inc. (SGI), and 
supported complete descriptions of scenes with 
geometry, lighting, materials and a user interface, as 

well as the necessary networking extensions.  In 1995, 
SGI released WebSpace Navigator, the first VRML 
browser, and soon after, Intervista released WorldView 
for Windows.  Also in that year, several of the mailing 
list’s leading experts formed a subgroup, named the 
VRML Architecture Group (VAG), whose purpose was 
to develop a scalable, fully interactive standard for 3D 
shared worlds.  By mid 1996, the official VRML 2.0 
specification was published, and by the end of 1997 it 
had been standardised by the International Standards 
Organisation as VRML97 (ISO/IEC 14772-1:1997). 

1.2 Issues with Simulation Model Analysis 
In the field of simulation, system hardware can be 
costly, and the visualisation software is often 
commercial, using proprietary Application 
Programming Interfaces (APIs) and file formats.  These 
aspects can make it difficult to view simulations on 
typical desktop computers, let alone share the 
information across a network on different platforms. 

The Virtual Reality Modelling Language is an open, 
standardised file interchange format that supports 
scripting in other standard languages such as Java and 
Javascript.  VRML browsers (both plug-ins and 
standalone versions) are freely available on the Internet 
for a wide range of platforms, and they typically include 
many features such as real-time playback, advanced 
modelling and rendering capabilities including spline 
and NURBS objects, lighting effects, varying level-of-
detail and anti-aliasing.  Moreover, they have the 
advantage of being able to be shared across the Internet 
easily, opening up possibilities for the dissemination of 
graphical information.  VRML files can be hosted on 
any web server for transfer and presentation on a client 

  



machine.  They are also compact and modular, allowing 
for rapid, efficient download of the virtual world with 
only those constituents required at any one time. 

HSLSIM was written in MATLAB, a high-performance 
numerical computing environment which is built around 
matrix mathematics, and therefore amenable to dynamic 
modelling and simulation work.  MATLAB also 
provides an ideal workplace in which various analyses 
can be conducted following the simulation itself.  The 
simulation code is a complex multi-body solution based 
on the formulation developed by Cicolani et al. [4].  In 
this formulation, the general system equations of 
motion are obtained from the Newton-Euler equations 
in terms of generalised coordinates and velocities.  
Following the explicit constraint method, which utilises 
d’Alembert’s principle, the system is partitioned into 
coordinates such that the motion due to cable stretching 
is separated from that due to rigid-body, coupled 
dynamics.  As a consequence, the constraint forces 
appear explicitly and a solution to the resultant 
generalised accelerations is determined by assuming a 
simple spring model for each cable. 

2. SIMULATION IN VRML 
The facility to generate VRML scenes from simulation 
data was developed in order to provide a graphical 
display of the aircraft response.  It must be understood, 
therefore, that the simulation actually takes place prior 
to display in the VRML browser.  For this project, the 
simulation is run within the MATLAB numerical 
computing environment, using a package named 
Helicopter Slung-Load Simulation (HSLSIM) [3].  
Figure 2.1 outlines the basic scheme employed.  The 
MATLAB simulation is able to utilise a high-fidelity 
helicopter model, ROTORGEN, which is written in 
Fortran.  A supplementary script, HSLVRML, is then 
executed to output the simulation data to a file in 
VRML format, which can be hosted on the web and 
viewed with an appropriate browser.  It is also possible 
to link the VRML simulation to Java applets via the 
External Authoring Interface (EAI) in order to provide 
additional information and/or functionality.  One such 
applet, VRMLTRACE, generates a set of time-histories 
for arbitrary variables of the simulation in a 
neighbouring frame of the web browser.  These 
components will be discussed in further detail below. 

A higher fidelity model than the one used initially was 
also integrated in the simulation via a MATLAB 
External (MEX) interface.  ROTORGEN was 
developed by Heffley [5] for the US Army 
Aeroflightdynamics Directorate under NASA contract 
to Hoh Aeronautics Inc.  It is described as a “minimal-
complexity generic rotorcraft model” intended for 
manned simulation of large military helicopters and, in 
particular, the CH-47D Chinook tandem rotor 
helicopter. 

Simulation
HSLSIM

Output script
HSLVRML VRML Plugin

Helicopter model
ROTORGEN

External Interface
VRMLTRACE

MATLAB Web Browser

WRL File

 

The simulation model is first initialised with a set of 
flight conditions and given a pre-determined sequence 
of control inputs to be used in the computation of a 
response.  The model is then trimmed according to the 
specified flight conditions until an equilibrium state is 
reached, and then integrated over the time range to 
produce a set of simulation data.  The data comprises 
the helicopter and load positions, orientations, the 
control inputs and geometric information regarding the 
helicopter load configuration.  As for most aeronautical 
systems [6], the positions are specified in right-handed 
Cartesian axes (with positive-z downward) and the 
orientations in Euler angles. Figure 2.1: VRML generation scheme 

Once the data have been collected, it is then passed to 
the output script HSLVRML for processing and 
generation of the VRML file.  There are a number of 
transformations necessary to convert the position and 
orientation data for helicopter and load into a form 
suitable for inclusion in the VMRL model.  The primary 
transformation is that from Euler orientation to 
quaternion orientation, the latter being represented by a 
unit vector axis xi + yj + zk, plus a rotation angle α 
about that axis.  To convert Euler angles to quaternions, 
the following expressions [7] are used: 

2.1 Calculation of Simulation Data 
The Helicopter Slung-Load Simulation package 
HSLSIM was developed at DSTO as a fundamental part 
of the Chinook Flight Operations Task sponsored by the 
Australian Army.  In the past, the operations of 
helicopters carrying externally slung loads has often 
been limited and, in some cases, seriously hindered by 
stability and control problems.  A program was 
consequently initiated within the Defence Science and 
Technology Organisation (DSTO) to use computer 
modelling and simulation to assist in defining the 
operational limits of the Australian Army Chinook 
CH-47D helicopter when carrying slung loads.  The 
first phase in this program entailed the development of 
a helicopter slung-load model for simulation and 
analysis in order to provide a better understanding of 
the system dynamics and various effects involved. 
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Then, to convert from quaternions to a rotation axis and 
angle, the following are used: 
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Similar transformations are also needed for the rotors 
and the sling cables, both of which are transformed 
about the helicopter body-axes before transformation to 
inertial axes using the equations above.  For example, 
the rotors are rotated about their own axes according to 
the current time-step, then translated to their positions 
up on the forward and aft helicopter hubs, and then they 
are rotated and translated along with the helicopter.  
Calculation of the position and orientation for each of 
the sling cables is somewhat more involved, however.  
It requires that the positions of the attachment points 
first be determined from the helicopter and load, and 
then that the equivalent quaternion rotations be 
calculated for cylinder nodes starting from their default 
orientations.  Another set of coordinates that are 
required for the VRML model are the vertices of the 
load-displacement patch, a semi-transparent arc 
illustrating the deviation of the load from its trim 
location relative to the helicopter.  As with all of the 
above data, these transformations must be performed 
for each time step, since they all depend on the position 
and orientation of the helicopter and load, which 
changes throughout the simulation. 

In addition to the transformations of the geometric 
nodes, several additional sets of data are required for 
the moving viewpoints in the VRML world.  The 
viewpoints include typical orthographic perspectives of 
User defined, Side, Front, Top and Behind, as well as 
Fixed-Inertial, a Zoom/Pan view, Fixed-Aircraft (user 
defined) and Fixed-Aircraft (downward looking).  The 
orthographic viewpoints remain static in orientation and 
positionally fixed relative to the helicopter throughout 
the simulation.  Orientation of the dynamic viewpoints, 
such as the Fixed-Inertial view, must be recalculated for 
each time step, as with the helicopter and load.  Both 
the Fixed-Inertial and Zoom/Pan views are aligned 
along the vector drawn from a fixed position specified 
in inertial axes to the helicopter’s origin.  While the 
Fixed-Inertial view remains fixed at the location 
specified, the Zoom/Pan view maintains a constant 
absolute distance, typically much closer, from the 
helicopter.  The Fixed-Aircraft views undergo the same 

transformations as the helicopter, with the addition of a 
rotation and translation applied to each beforehand. 

The last set of nodes that are created are the gridlines 
and ground surface, the dimensions of which are 
calculated to suit each simulation.  The grid is created 
purely for reference information and covers each wall 
of a rectangular box shape, where the size of the box is 
equal to the domain of the helicopter and load 
movement, plus some arbitrary buffer. 

After all of these nodes have been output to file, 
HSLVRML adds the background information, some 
lights, a set of default navigation information and the 
routes necessary for animation.  As a final step, the file 
can be compressed into a compact binary format using 
GZIP [8], which is still able to be read by the VRML 
browser, but small enough for fast transmission over the 
Internet. 

2.2 Structure of VRML Model 
As stated in the Virtual Reality Modelling Language 
Functional Specification [9], “A VRML file consists of 
the following major functional components: the header, 
the scene graph, the prototypes, and event routing.  The 
contents of this file are processed for presentation and 
interaction by a program known as a browser.” 

The file is typically formatted in UTF-8 clear text 
encoding, also known as Unicode, which is defined in 
the header.  The scene graph contains nodes used in the 
model.  Nodes are abstractions of various real-world 
objects and concepts, such as boxes, interpolators, 
lights and material descriptions, organised into a 
transformation hierarchy.  Prototypes define new node 
types in terms of already defined (built-in or 
prototyped) node types.  They can be included in the 
file in which they are used or defined externally.  The 
scene graph also includes routes, which define how and 
when events are propagated through the model to affect 
other nodes.  When generated, these events are sent to 
their routed destinations in time order and processed.  It 
is the execution engine that processes events, reads and 
edits the route graph and makes changes to the 
transform hierarchy. 

Figure 2.2 illustrates the conceptual execution model 
utilised in the simulations. 
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Figure 2.2: The conceptual VRML execution model 

The general order in which execution takes place is as 
follows: 

1. User clicks on a Touch Sensor, sending a touchTime 
event to the Time Sensor startTime. 

2. The Time Sensor becomes active and starts 
generating continuous events, including 
fraction_changed - a variable in the closed interval 
[0,1] indicating the completed fraction of the current 
cycle - which is sent to the set_fraction events of 
various Position and Orientation Interpolators. 

3. The value_changed events of those Position and 
Orientation Interpolators are sent to the translation 
and rotation fields, respectively, of the 
corresponding Transforms. 

4. Any geometries within the Transforms undergo 
translation and rotation according to the values set. 

5. Execution continues with steps 2 through 4, 
repeated until the Time Sensor time reaches its 
cycleInterval, upon which it becomes inactive and 
the event clock is stopped. 

The browser takes care of the interpretation, execution 
and presentation of the VRML file, and facilitates 
navigation through the virtual world as well as 
interaction from the user.  Most importantly, perhaps, 
the browser controls the passage of time in a world 
through Time Sensors and typically the times generated 
will approximate “real” time.  This necessitates the use 
of Interpolators to calculate the state of the Transform 
nodes at any one time, since no assumptions can be 
made about how often a Time Sensor will generate 
events.  Interpolators are designed for linear key-framed 
animation, which means that, given a scalar position 
within the list of keys, they will interpolate within the 
list of keyValues to return a corresponding value.  For 
the helicopter slung load simulation, these include 
various Position and Orientation Interpolators for all 
moving objects in the scene. 

The physical format of the VRML simulation model 
essentially comprises two parts: the main file that 
details the virtual world, and a group of external 
prototype files containing the geometric models.  These 

prototypes include the helicopter and loads, which are 
chosen from a set of models depending on the 
configuration and do not change during the simulation.  
Both helicopter and load models are comprised mainly 
of Transforms, simple shape nodes, such as Boxes, and 
more complex ones, such as IndexedFaceSets.  An 
ImageTexture node within the Shape node of the 
Helicopter and Load may also contain a URL link to an 
image that is mapped on to the parent Shape.  If this is 
omitted, the Appearance of the Shape is set by the 
Material node instead.  Contained within the main 
VRML file are references to those external nodes, the 
Time and Touch Sensors, Interpolator nodes, additional 
geometric model nodes, Viewpoints, the simulation 
grid, background, lighting and navigation information, 
as well as the route graph.  Figure 2.3 outlines the basic 
structure of the VRML model. 

 
Figure 2.3: Transform hierarchy of VRML model 

 

The TimeSensor is listed first, and is instantiated with a 
cycleInterval equal to the total simulation time in 
seconds.  The remaining parameters, such as the 
startTime and loop, are left at their default values. 

Next are the Transform nodes that parent the helicopter, 
rotors, cables and loads, as well as their respective 
Translation and Orientation Interpolators.  Each 
Transform node has a set of children, as well as a 
rotation, scale and orientation defined by vectors.  The 
HelicopterSimulation Transform contains several 
children, including the helicopter and rotor 
transformation hierarchy.  For the helicopter, a node is 
created by reference to an external prototype, declared 
at the start of the file in an EXTERNPROTO field.  A 

  



TouchSensor node renders all geometric nodes within 
the same Transform sensitive to activation from user 
input, such as a mouse button.  When the mouse button 
is pressed and released over either the helicopter or 
rotors, the TouchSensor generates two isActive events 
and a touchTime event.  In addition to the geometric 
helicopter node, an OrientationInterpolator node and 
PositionInterpolator node are grouped within the 
Transform.  It is not necessary that they be grouped in 
this way, since the Route Graph independently defines 
all interaction in the virtual world, but is done so for 
clarity.  Both Interpolators define an array of scalar 
keys and an array of vector keyValues - the orientation 
and position at each key. 

The FwdRotorSimulation and AftRotorSimulation 
constitute two more Transforms within the 
HelicopterSimulation Transform, and each holds a 
further Transform of its own, as well as an 
OrientationInterpolator.  There are two successive 
Transforms in this case, so as to effect a constant 
rotation rate about one axis - the rotor hub - and then 
another rotation and translation to move the rotor to its 
position on the helicopter.  Within the second 
Transform lie the geometric rotor nodes, comprised, 
once again, of simple shape objects such as Cylinders 
and IndexedFaceSets. 

The CableSimulation and LoadSimulation nodes are 
defined outside the main HelicopterSimulation 
Transform, but could just as easily have been defined 
within.  They are separate here because their positions 
and orientations are calculated in inertial axes, as 
opposed to helicopter axes, and so their motion is 
absolute rather than relative.  There are actually several 
Cable nodes in the model shown, although only one has 
been included in the hierarchy, since their structure is 
identical.  Much like the helicopter, they contain further 
Transform nodes, Interpolator nodes and geometric 
nodes.  The CableSimulation includes the addition of a 
PositionInterpolator for the changing scale, or 
stretching of the cable.  The LoadSimulation also has a 
TouchSensor node, the same as that in the 
HelicopterSimulation Transform.  Both TouchSensors 
are routed to the TimeSensor, so that either can start the 
simulation. 

A series of Transforms containing the various 
Viewpoints follow, though only one is listed in the 
figure.  These consist of a Viewpoint node, with 
fieldOfView, orientation, position and description 
fields, and an OrientationInterpolator.  Some 
viewpoints, such as the Fixed-Aircraft, also include a 
PositionInterpolator. 

Two transforms for the Ground and Grid nodes are 
next.  Only one of the six similar Grid nodes is listed.  
The Ground is constructed from an IndexedFaceSet, 
while each of the Grid faces is built from an 
IndexedLineSet. 

Last in the list are the Background, DirectionalLight 
and NavigationInfo nodes for the virtual world.  The 

Background node has a number of fields including the 
groundAngle, groundColor, skyAngle and skyColor 
values.  The DirectionalLight node has an 
ambientIntensity, color, direction and intensity among 
others.  The NavigationInfo node includes a headlight, 
speed and type field.  Each of the different Viewpoints 
is listed in the type field for easy navigation. 

Apart from the external prototype declarations at the 
start of the file, the only other set of semantics not 
included in the above diagram are the routes.  Routes 
are not nodes, but are construct statements establishing 
event paths between nodes.  They may be established 
only from eventOut fields to eventIn fields, and the 
types of the eventIn and the eventOut must match 
exactly.  As an example, the route path for the 
helicopter’s rotation and translation is constructed with 
the following code:  

  
ROUTE HClick.touchTime       TO TimeS.startTime 

ROUTE TimeS.fraction_changed TO HRot.set_fraction 

ROUTE TimeS.fraction_changed TO HTrans.set_fraction 

ROUTE HRot.value_changed     TO HSim.rotation 

ROUTE HTrans.value_changed   TO HSim.translation
Route statements can either appear at the top 
hierarchical level of the VRML file, in a prototype 
definition, or inside a node wherever fields may appear. 

3. EXTENDING THE SIMULATION 
Some time after the VRML script was written, a few 
enhancements were desired to improve the functionality 
and provide more information during the simulation 
replay.  Primarily, these included the ability to view 
several frames at once, and the display of other system 
variables.  The first enhancement would allow for either 
different simulations to be run concurrently, or different 
views of the same simulation to be displayed at the 
same time.  The second would provide indication of 
other important variables, not shown in the virtual 
world, such as the control inputs driving the helicopter 
response. 

Both of these enhancements were made possible 
through using the External Authoring Interface (EAI) 
and the Java Virtual Machine [10].  The EAI is a 
proposed Informative Annex to the VRML97 
specification and currently the most effective way to 
incorporate additional media components into the 
display. 

3.1 Synchronising across Frames 
The problem of synchronising multiple frames - each 
containing VRML modes - within the web browser was 
reasonably straight forward, although it did require the 
creation of a supplementary VRML file containing 
another TimeSensor node.  This timer is placed in a 
frame of zero size, since there’s nothing to display, and 
it runs continuously.  The Java applet accesses the 
TimeSensor nodes from the timer, and the VRML 



simulations, as well as references to their eventOut and 
eventIn fields, respectively.  It essentially routes them 
together, and sets the startTime of both dormant 
TimeSensor nodes in the VRML simulations to the time 
of the already running TimeSensor node in the timer, 
upon activation of a button widget.  This starts the 
simulations.  However, since they are still both 
internally routed to their own TimeSensors, they will 
only remain synchronised if the browser keeps both 
streams running at the same speed.  For most 
applications, particularly when the same or similar 
models are being run, this has shown to be sufficient. 

Figure 3.1 shows a screen-captured image of the web 
browser with two simulations running synchronously.  
The simulations demonstrated the effect of sling 
configuration on the helicopter slung-load stability [11]. 

 
Figure 3.1: Synchronised simulation models 

3.2 Displaying Additional Variables 
The Java implementation of an additional display was 
somewhat more detailed, but relied on a similar 
methodology to that applied in the frame 
synchronisation case.  Two frames are employed in this 
enhancement, with the VRML simulation in one and a 
set of moving trace plots in the other.  Once again, a 
separate, individual TimeSensor node is utilised to keep 
time in both frames.  However, the Java applet also 
accesses those nodes whose values are to be displayed 
on each of the trace plots.  For variables not used in the 
simulation display, such as the control positions, this 
necessitates the inclusion of additional dummy nodes in 
the model.  In this case, four ScalarInterpolator nodes 
have been added - one for each of the four helicopter 

controls.  Also, four routes from the local TimeSensor 
to each of the ScalarInterpolators are necessary in order 
for them to keep time with the rest of the VRML model.  
Now the local TimeSensor is activated via the 
independent TimeSensor upon button press, and the 
Java applet receives eventOut values from the 
ScalarInterpolator nodes as the time proceeds.  In a 
similar manner to the case above, each trace and the 
VRML simulation are not truly synchronised, since they 
all run on different threads.  This can be noticeable for 
high frame rates or when there is a large amount of data 
to plot, but is generally not a problem. 

Figure 3.2 illustrates the web browser with a simulation 
and Java display running. 

 
Figure 3.2: Simulation and variable trace plots 

4. SCOPE FOR FURTHER DEVELOPMENT 
There is considerable scope for further development in 
the visualisation of simulations using VRML.  One idea 
is to make the output script software independent, since 
there is no real need to have it run from within 
MATLAB.  This requires rewriting the code in an open 
standard language, for example Java or Perl/Tk, that 
can be run on a wide range of platforms.  Furthermore, 
if the format of the input data was standardised, or even 
generalised, then output from other simulation 
programs could be processed to return a VRML file. 

The thought of running the actual simulation inside a 
VRML model using scripting is feasible but not 
practicable in a real-world sense.  Simulation models 
are typically very complex and incorporate a significant 
proportion of legacy code written in multiple languages, 
and the VRML paradigm is too restrictive to manage 

  



  

 

such programs.  VRML as a standard is also quite 
immature, and for all of its strengths, it still lacks in 
functionality and extensibility.  Fortunately a new 
standard currently in development, named X3D [12], is 
addressing those very issues, although such a solution 
would never be able to compete with dedicated 
simulation programs that use low-level APIs for display 
[13].  If there is a future in using VRML or X3D in 
simulation, it will be as a lightweight visualisation tool, 
with scope for interaction and collaboration across 
networks. 

5. CONCLUSION 
The Virtual Reality Modelling Language has proven to 
be invaluable in the visualisation and analysis of 
helicopter slung-load simulations.  Under the associated 
task at DSTO, a methodology has been developed and 
the software written to generate VRML models from 
flight data, allowing the simulation to be viewed on the 
Internet by anyone with a freely available browser 
installed. 

The VRML model has also been extended to display 
simultaneous simulations or additional data sets during 
replay.  Even with the added capability, the 
requirements are minimal for viewing the VRML 
simulation, and can be done using many of the 
computer platforms in common use today. 
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