

PyDES: A Framework for Complex Scheduling Analysis using
Discrete-Event Simulation

Roger A. Stuckey

Defence Science and Technology Organisation, Eveleigh, NSW 2015, Australia
Roger.Stuckey@dsto.defence.gov.au

Abstract. This paper presents a software framework for complex scheduling analysis with a primary focus on the
domains of capability development and acquisition support. The framework provides a system within which
problem-dependent application models with stochastic components and processes can be constructed. The framework
and models are written in the Python programming language, making the development of new models relatively
simple whilst allowing for complex interactions to be implemented. For any application, discrete-event simulations
of the model can be run many times in a Monte Carlo experiment to derive statistical measures of performance and
effectiveness. It is also possible to conduct sensitivity analyses and explore the parameter space of application
scenarios by running different sets or batches of simulations. The software comprises a core library for running each
simulation, as well as libraries for the management of multiple simulations, graphical output generation and the
creation of user interfaces. It can be driven with scripts from the command-line environment, or controlled via a
front-end graphical user interface. The framework can also exploit multi-core systems and run in a distributed client-
server architecture either locally or remotely on the Amazon Elastic Compute Cloud (EC2) for scalable performance
gains. Two exemplary applications are discussed: Naval Area Defence (NAD) and; Unmanned Maritime Operations
(UMO). The NAD application has been developed to support decisions regarding system integration and operations
for surface-air defence of naval assets. The UMO application was developed to assess various concepts of operation,
efficiency and crew workload in the use of unmanned maritime systems for large-area survey missions. The general
features of the software are presented, along with some examples of its use in each of the applications.

1. INTRODUCTION
PyDES is a software framework for complex scheduling
analysis using discrete-event simulation (DES). PyDES
provides capabilities for sensitivity analysis and
exploration of the parameter space, as well as a
graphical user-interface and facilities for visualisation
of the results. At the heart of the framework is a
simulation engine capable of coordinating the response
of any number of resource-based models tasked with a
list of objectives to meet. In general terms, the
simulator makes repeated attempts to schedule
engagements against each of the outstanding objectives
in a time-optimal manner, until all objectives have been
engaged and all other requirements have been satisfied.
PyDES is written in the Python [1] programming
language and designed for ease of implementation and
extensibility. Python was chosen as the core language
because it is highly abstracted and expressive, making
model development relatively simple, yet powerful
enough to run thousands of Monte Carlo simulations [2]
with internal optimisations involving hundreds of
models. It is platform independent and there is also a
large community of Python programmers around the
world - particularly in the scientific domain - enabling
the leverage of many open-source projects, such as
Numpy [3, 4] for numerical computation, Matplotlib [5]
for plotting and Pyro [6] for distributed computing.
With most visual programming software solutions,
often only the most basic types of processes and
interactions, such as generic servers and queues, can be
implemented using the graphical user-interface.
Constructing a realistic simulation from these graphical
building blocks can be a challenging task and the

resulting models an elaborate hierarchy of blocks within
blocks. Moreover, the developer will invariably reach a
point at which scripts must be written within each
model in order to codify more detailed behaviours.
Sometimes, the integration of complex interactions can
be extremely difficult or even impossible. With
PyDES, the models ‘live’ within the code and are not
limited by any graphical representation. The developer
has complete control over the models, their interactions
and even the procedures for scheduling and engagement
in the event queue. The simulation and models also
benefit from the object-oriented nature of the language
with features such as encapsulation, polymorphism and
inheritance.
Rather than offering a ‘one-solution-fits-all’ approach to
modelling in the discrete-event time domain, PyDES is
aimed at addressing a particular class of problem. That
is, as noted above, the repeated scheduling of resource-
based engagements against a list of objectives in a time-
optimal manner. This paper will first present a
description of the scheduling approach used and the
representation of the scenario specific to each
application, followed by a more detailed description of
the main classes used by the simulation. Last, the issue
of computational speed is discussed, and the scalability
features of the framework designed to mitigate those.

2. DESCRIPTION OF THE PROCEDURE
In generic terms, a scenario is composed of a number of
hosts - each of which holds a hierarchy of resources -
and a number of generators - each holding a list of
objectives. The term objective is loosely defined and
dependent on the application being modelled. Every
objective, once activated, must be engaged by a set of

mailto:Roger.Stuckey@dsto.defence.gov.au

resources, typically resident on one or more of the
hosts. This is accomplished by scheduling
engagements, which encapsulate a combination of start-
times and durations required by each resource in
meeting the objective. These engagements can be
managed individually, by each host, or in a coordinated
manner across several hosts. In PyDES, each
Engagement Manager can be associated with several
hosts, but each host can only have one Engagement
Manager.
Nominally, the resources must be scheduled according
to an engagement profile. The form of that profile
being based on the invoking event. Examples of the
engagement profile for both NAD and UMO
applications are presented in the following section.
There are potentially many ways by which a set of
resources can be selected to meet an objective. The
most naive approach will just select the first, or
randomly, from each type of resource available at that
time. However, there is no guarantee that all of the
resources will be available at the appropriate time.
Another approach is to select a set and then wait until
they are all available, but this can lead to large delays or
an inability to engage every objective. A better
approach is to search through all combinations of
resources to determine one that will engage the
objective in a minimum time. This exhaustive approach
will yield an optimal set, but may take some time to
process, particularly if there are a substantial number of
resources. Therefore, the best approach will attempt
some form of combinatorial optimisation for each
engagement. One of the main features that differentiate
PyDES from many existing DES packages is its ability
to perform this inner-loop optimisation of the resources
selected. That can range from an exhaustive search for
the best possible combination of resources, or a search
of the subset defined by some heuristic. In PyDES, the
resources are first sorted according to their idle-time
and then some number of the top combinations, defined
by the user, chosen for exhaustive search.
Another level of complexity arises if there are several
objectives to be engaged at any one time, or another
event has prompted a reassessment of the currently
scheduled engagements. The objectives must be
prioritised, and a non-conflicting set of resources
scheduled against each. There are currently two
approaches employed by the Engagement Manager:
1. Schedule an engagement for the highest priority

objective if and only if resources are available at
the time of assessment, plus a check at some future
time when resources are expected to be available
next and;

2. Schedule tentative engagements against all
objectives, in order of priority, with non-conflicting
resource profiles.

The first approach is much faster, but the advantage of
the second is that one can ensure a maximum number of
objectives are engaged. That is, the ordering of
schedules can be based on factors supplementary to the
objective priority. In PyDES, the first is termed “Just-

in-Time” (JIT) scheduling and the second, “Objective-
based Priority” (OBP) scheduling.

3. IMPLEMENTATION DETAILS

3.1 Software Architecture
The PyDES framework is divided into front-end and
back-end components. As illustrated in Figure 1, the
front-end reads input data in the form of a Scenario data
structure, which is then passed to the back-end for
simulation. Results are then returned to the front-end
for output and display. The front-end can take the form
of a script or a graphical user interface. A script allows
greater control over the simulation, as well as the
definition of additional classes, whereas the GUI tends
to be easier to use for those not familiar with the Python
environment.

Figure 1: Generic Program Flowchart

The Scenario data structure can either be created from
another Python script, or written explicitly in the XML
or YAML format. It represents the taxonomy of
resources and objectives in the relevant application and
their attributes in parametric form. Both script and GUI
can facilitate modification to the scenario and both can
export the results to file in addition to generating
interactive graphical output.
The simulation manager is responsible for a number of
tasks associated with the execution of the simulation(s).
Most importantly, for scenario batches, it distributes
and manages the tasks sent to individual simulators and
then amalgamates the results returned from each. The
tasks comprise, among other fields, the Scenario data
structure and parameters controlling the execution of
the simulation, such as the number of runs.
When passed to a simulation object, the Scenario
structure is replicated with objects representing each
resource and objective in place of the dictionary values.
Those objects are then allowed to interact at designated
times in the event queue. To start the simulation, a
‘start’ event is fired and an initial interaction takes
place, spawning a new set of events. Thereafter, events
are fired and spawned as interactions occur repeatedly
until no future events exist in the queue.

Graphical
User-Interface

Simulator

Simulator

Simulator

Sim Server

Sim Server

Sim Server

Simulation
Client

Simulation
Manager

Plot Results
Scripts

Save/Export
Scripts

Simulation
Front-end

Scenario
Script

3.2 The Scenario
The Scenario data structure supplied to the PyDES
simulation manager and simulator is a Python
dictionary consisting of lists of smaller dictionaries
within which the resource and objective parameters are
stored. Inside the simulation manager, the values for
each are used to create the corresponding object.
For the NAD application, the host and generator are
represented by Platform and Target objects,
respectively. There is also a list of Engagement
Managers referenced in the scenario. Resources on
each Platform consist of Search Radars, Illuminators
(which also represent the Fire Control Radar, FCR),
Launchers and an Engagement Manager. The
Launchers contain several SAM Types; individual SAM
objects are created within the simulator. Each Target
consists of a number of Threat Sectors and Engagement
Managers. Each of the Threat Sectors contain several
ASM Types; individual ASM objects are created within
the simulator and are themselves stored inside Objective
objects. The skeleton structure is listed below:

where the asterisk, ‘*’, represents one or more
parameter keys and/or values.
In simple terms, the scenario is simulated as follows:
1. The ASM’s are detected by each Engagement

Manager as they come into the Platform’s Search
Radar range.

2. The Engagement Manager(s) respond by
scheduling a profile of Illuminators, Launchers and
a salvo of SAM’s against the ASM.

3. When all resource-based events related to the
engagement are complete, a post-fire evaluation
(PFE) phase is conducted to determine if intercept
was successful.

4. If successful, no further action is taken. If
unsuccessful, another profile of resources are
scheduled against the ASM.

5. The process repeats until all ASM’s have either
been intercepted or detonated by impacting the
Target.

Figure 2 depicts the basic engagement profile for the
NAD scenario.

Figure 2: NAD Application Engagement Profile

The start-time for the engagement is dependent on the
anticipated intercept(s) time, which is determined by the
designated range of intercept and the availability of all
resources. The availability of each resource is
determined by the list of existing/scheduled periods and
the start-time and duration required by the engagement.
Durations can be static (fixed), such as the Pre-launch
delay, or dynamic, such as the Illumination time, which
depends on the flyout time, the SAM illumination
mode, as well as the terminal guidance duration.
The full time-history for a self-defence (single Target)
scenario is shown in Figure 3.

Figure 3: NAD Time-History Example

The NAD application has been used to determine many
factors related to anti-ship missile defence, including
Probability of Survival and Keep-Out Distance for
various configurations and threats.
For the UMO application, the host and generator are
represented by Platform and Search Area objects,
respectively. As with all applications, there is also a list
of Engagement Managers referenced in the scenario.
Resources on each Platform consist of Autonomous
Vehicles (AV’s), Launchers, Rechargers, Support
Teams and an Engagement Manager. The AV’s contain
several Sensors and the Support Teams contain a
number of Managers, each of which is in charge of
several Crew Members. Each Search Area consists of a

Attack

Pre-launch

Launch(es)

Post-launch

Illuminator
Slew

Illuminator
Acquire

Illuminate

ASM

Launcher

SAM #1

Illuminator

SAM #2

SAM #3

Post-fire
Evaluation

SAM Flyout

Scenario = {

 'Platforms' : [{ * ,

 'Search Radars' : [{ * }],

 'Illuminators' : [{ * }], # also Fire Control Radar

 'Launchers' : [{ * ,

 'SAM Types' : [{ * }] # Surface-Air Missile

 }],

 'Engage Manager' : *

 }],

 'Targets' : [{ * ,

 'Threat Sectors' : [{ * ,

 'ASM Type' : [{ * }] # Anti-Ship Missile

 }],

 'Engage Managers' : [*]

 }],

 'Engage Managers' : [*]

}

number of Track Areas and Engagement Managers.
There is a list of Track Paths which define the AV
survey paths to be used inside the Track Areas. Each of
the SubObject Fields contain several SubObject Types;
individual SubObject objects are created within the
simulator and are themselves stored inside Objective
objects. The skeleton structure is listed below:

The UMO scenario is simulated as follows:
1. The Track Areas are added to the list of Objectives

in order of distance from the Platform.
2. The Engagement Manager(s) respond by

scheduling a profile of AV’s, Launchers,
Rechargers and Support Teams to survey the Track
Area with a pre-defined Track Path. The Support
Teams consist of a Manager, plus Crew Members
with roles as Deck-hand, Launch-hand, Analyst and
Operator (if required).

3. During the search phase, any SubObject that the
AV passes over and detects is flagged as such.

4. When all resource-based events related to the
engagement are complete, including the analysis,
an evaluation is conducted to determine if a further
reacquire mission is necessary for any of the
SubObjects detected.

5. If more data is deemed necessary for some or all of
the SubObjects, a reacquire mission is scheduled
for them. The reacquire mission has a different
profile and Track Path, visiting each of the
SubObjects and conducting local searches one-by-
one in an order determined by a ‘Travelling
Salesman’ algorithm.

6. The process repeats until all Track Areas have been
surveyed and no SubObjects remain to be
reacquired.

Figure 4 depicts the basic engagement profile for the
UMO scenario.

Figure 4: UMO Application Engagement Profile

The full time-history for a coordinated survey scenario
with two Support Teams is shown in Figure 5. The
additional 4 blocks in the Crew Member’s state lists
represents periods of down-time during which they
cannot be scheduled for any engagement.

Figure 5: UMO Time-History Example

The UMO application has been used to assess differing
operating procedures in regard to such factors as survey
efficiency, clearance rates and crew workload.

3.3 The Simulator
The Simulator defines how the Scenario operates
logistically and therefore each application must derive
its own version from the base Simulator class. The
class attributes consist of a collection of Simulator
State-based Objects (SSO’s) representing the resources,
an Event Queue, Objective List and an Engagement
Manager. Class methods include functions for
initialisation, simulation and all of the functions that
constitute events as well as any supplementary methods
involved in the event-driven interactions. The event
methods must include ‘start’ and ‘check’ operations as a
minimum. The 'start' function simply starts the
simulation and the ‘check’ function provides the
Engagement Managers with an opportunity to schedule
Engagements against any outstanding Objectives.

Pre-charge
& Plan

Pre-launch

Launch

Search

Recovery

Post-recovery

Analysis

AUV

Recharger

Manager

Launcher

Deck-hand

Launch-hand

Operator

Analyst

Scenario = {

 'Platforms' : [{ * ,

 'AVs' : [{ * , # Autonomous Vehicles

 'Sensors' : : [{ * }]

 }],

 'Launchers' : [{ * }],

 'Rechargers' : [{ * }],

 'Support Teams' : [{ * ,

 'Managers' : [{ * ,

 'CrewMembers' : [{ * }]

 }]

 }],

 'Engage Manager' : *

 }],

 'Search Areas' : [{ * ,

 'Track Areas' : [{ * }],

 'Engage Managers' : [*]

 }],

 'Track Paths' : [{ * }],

 'SubObject Fields' : [{ * ,

 'SubObject Types' : [{ * }]

 }],

 'Engage Managers' : [*]

}

The most important method of the Simulator object is
the ‘schedule’ function, which inserts states into each of
the SSO’s state lists corresponding to the engagement
supplied. The State List attribute of each SSO is a time-
ordered list of states that have been allocated, also
known as a state trajectory. At a minimum, each state
consists of a start-time, duration, description and
identifier. Some SSO’s also have a list of references to
objects (typically other SSO’s) and a start-position and
shift. For example, the Illuminator SSO utilises the
start-position and shift to represent its initial slew-angle
and linear angular displacement. Thus, the state slew-
angle displacement can be calculated from the
Illuminator’s slew-rate property and state duration.
Conversely, the state duration can be calculated from
the initial slew-angle and displacement. Various
functions exist to navigate and manipulate the State
List, such as finding states, inserting and deleting states,
as well as functions to check for the object’s
availability, or gaps in its State List.
The Event Queue constitutes a time-ordered list of
events to be executed, or fired. Each event is a
dictionary object consisting of a start-time, an operation
tag, a unique identifier and an arbitrary object (typically
an SSO). Unlike the SimStateObject’s State List, there
is no requirement for a duration to be stored; the event
simply indicates that a set of specific actions are to be
taken at that time, including the creation of other events.
The Objective List is a priority-ordered list of
objectives. Objectives in the Objective List are Python
objects instantiated from the Objective class.
Objectives have a unique identifier, a list of objects, a
detection status flag and an engagement status flag. The
priority is defined by the application. For example, the
NAD application prioritises threats according to their
expected time of impact and consequently attempts to
engage them in that order. The default options for
detection status are ‘undetected’ and ‘detected’. Those
for the engagement status are ‘unscheduled’,
‘scheduled’, ‘engaged’ and ‘noengage’. An objective
that has been ‘detected’ cannot be ‘undetected’ and one
that has been ‘engaged’ cannot be (re-) ‘scheduled’.
As with the SSO’s State List functions, the Objective
List also has functions to navigate and manipulate the
list, such as retrieving particular objectives, inserting
and deleting objectives, as well as functions to set the
detection status and engagement status flags.
The Engagement class holds all resources and the
pertinent (State List) utilisation times to engage a
specific objective. Engagements are associated with a
particular Engagement Manager. The Engagement
class encapsulates the scheduling profile for its
combination of resources, such as calculating the
relative start-times for each resource and determining
the minimum time until a valid engagement is possible.
For the NAD application, there are basically two types
of limiting conditions: range-limited engagements and;
resource-limited engagements. The range-limited
engagements can be imposed by launch sectors,
engagement sectors and SAM ranges. Resource-limited
engagements are imposed by both the Illuminator/FCR

and Launcher. The minimum time until valid
engagement is determined by searching through the list
of times corresponding to limiting ranges and the list of
limiting times, as defined by existing active periods in
each resource’s State List. For each time, the relative
start time and duration for each associated resource - the
engagement profile - is calculated and then checked for
availability. The set of start times corresponding to the
minimum can then selected from all valid profiles and
used for scheduling the resources, performed by the
Engagement Manager in the next step.
For the UMO application, there are only resource-
limited engagements, although the number of resources
associated with each engagement is much larger, so
many more State List times need to be checked in order
to find a minimum, valid engagement. Certain
resources, such as the Deck-hand, Launcher and
Launch-hand are also used multiple times in the one
profile, further increasing the number of times checked.
The relative start-times and durations for each resource
within a profile can be either fixed or variable. In the
former case, the time and duration calculations are
straightforward and some efficiencies can be exploited.
However, the latter case may depend on any number of
factors, such as the resource’s current position, or some
randomly determined variable, thus requiring several
function calls for each time checked.
The Engagement Manager class manages the
engagements for all objectives in the Objective List.
There are currently two types of engagement policies:
Just-in-time and Prioritised scheduling. Just-in-time, or
late scheduling refers to the policy of scheduling an
engagement against the highest-priority objective as
soon as possible. In addition, all remaining (detected),
unscheduled objectives are examined for possible
engagement and a ‘check’ event is inserted into the
Event Queue at the minimum start time for those. In
prioritised scheduling, all detected, unscheduled
objectives are cleared and then re-scheduled according
to the order of priority in Objective List, each time a
‘check’ event is fired. However, no ‘check’ events are
explicitly inserted within the engagement process itself.
Compared to Just-in-time scheduling, there are both
advantages and disadvantages of this policy. The main
advantage is that all outstanding (detected,
unscheduled) objectives are assessed and engaged at the
same time, possibly eliminating any bias which may
occur in the just-in-time case by scheduling some
objectives at a later time. The main disadvantage is that
certain resources can be “locked out” from being
employed to engage other objectives by scheduling too
early. The difference, albeit subtle, can sometimes
result in non-optimal scheduling or, in the worst case,
outstanding objectives that are unable to be engaged at
all.

3.4 The Simulation Manager
The Simulation Manager creates batches of scenarios to
be run by the simulator(s). It can run the simulations
either in the same, single process, or multiple processes.
It can be run as a synchronous (blocking) client, which

sends individual scenarios to any servers as they
become available and receives results from them as
their simulations are completed. The servers can be run
internally, using the Pyro framework, or on the Amazon
EC2 cloud, using the PiCloud service.
Scenario batches are defined by parameter lists within
the Scenario data structure. Every parameter within the
Scenario data structure is assigned a type, such as
floating-point scalar, integer, string or list. A parameter
space is consequently defined for any value within the
struct where a list of such parameters replaces a single
parameter. For example, if the floating-point scalar
‘speed’ parameter of the ‘SAM Types’ list-element dict
was replaced by a list of floating-point values, the
parameter space would span that list. If the ‘position’
two-list (x, y) of the ‘Platforms’ list-element dict was
replaced by a list of two-lists, a sequence of Scenarios
with varying platform position would be run.
For the area-defence scenario depicted in Figure 6, the
effect of varying the Target position is illustrated with
the Probability-of-Survival (Ps) heat-map, shown in
Figure 7.

Figure 6: Area Defence Scenario Plan View

Figure 7: Probability of Survival for a NAD Scenario

In the second figure, green indicates a high Ps for the
Target and red, a low Ps.
Implementing a number of parameter lists within the
same Scenario data structure has the effect of defining a
complete parameter space, comprising every
combination of parameters represented by lists. Due
care must therefore be taken to avoid blowing out the
size of the parameter space to explore. In the above
examples, if we were to define lists of M ‘speed’ values
and N ‘position’ values, a total of M x N Scenarios
would be exercised.
Thus we are left with the problem of simultaneously
varying parameters. For example, if the Platform’s
‘engageCentre’ parameter varied according to the
Target's ‘position’ parameter, we would not define two
M-lists since that would cause M^2 combinations to be
explored. In order to incorporate this in the correct
manner, we need to replace one parameter value by
either a function or an execution string which produces
the desired effect. In the example given, this would
entail assigning a function which calculates the
Platform’s ‘engageCentre’ based on the Target’s
‘position’ parameter within the same Scenario data
structure.
In summary, the Scenario can hold a static parameters,
as well as dynamic parameters. The dynamic parameters
can be either Batch Variables, which represent a
parameter subspace to explore, and Function Variables,
which represent a relationship within the data structure.

4. COMPUTATIONAL SPEED AND
SCALABILITY
When compared with compiled languages, like C++ or
even Java, the sole limitation of the Python language is
speed. For many applications, PyDES will be fast
enough. However, there are various ways in which this
shortcoming can be addressed. Namely, by
incorporating one or more of the following projects:
Numpy, Cython, PyCUDA/PyOpenCL and PyPy.
Numpy is a library for numerical computation and can
be used to some extent to vectorise some of the
rudimentary list operations. Numpy makes use of
optimised linear algebra libraries such as BLAS and
LAPACK [7], so is very fast for some operations.
Cython [8] simplifies the generation of C++ extension
modules for the CPython runtime, by facilitating
embedding C code directly in the Python code.
However, integration would require some of the
functions to be written in C++, which may be too large
a task. PyCUDA/PyOpenCL [9] packages enable
access to the GPU for accelerated parallel computation,
but also require low-level calls to the API and
consequently a significant amount of re-coding.
PyPy [10] is an alternative implementation of the
Python runtime, which incorporates a JIT compiler for
potential speed-up and memory conservation. Of the
projects outlined, PyPy shows the most promise, since it
is highly compatible with the standard Python
implementation. No additional code is required, and no
special library calls need be made. Moreover, the first
three solutions are targeted at inner-loop optimisation,

whereas PyDES employs many complex outer-loops
which would lessen their benefit.
The other approach to increasing performance, and one
that has been adopted in the framework, is to make the
system scalable. PyDES has options for scaling
vertically - by taking advantage of multiple CPU cores -
as well as horizontally - by exploiting additional
computing instances on the network. Parallel
computation is possible with the multiprocessing
library, which is now included in the standard Python
distribution. Distributed computation is facilitated with
the Pyro Remote Objects library. By refraining from
using any of the above projects, PyDES has remained a
‘pure Python’ software package, which yields many
advantages: not the least of which is that it continues to
be truly independent of operating system and hardware.
Pyro provides a system for employing remote objects
over the network. It is very straightforward to construct
a client/server architecture for distributed computation.
The Pyro library consists of a Name server and a
dispatcher, normally deployed on the same
‘management’ server, as well as a number of workers
(servers), deployed on ‘processing’ servers. The
dispatcher is added to the nameserver, then workers are
added to the dispatcher when started. In PyDES, the
Pyro version of the Simulation Manager contacts the
nameserver and receives a list of workers through the
dispatcher. It then sends scenarios from the task queue
to the dispatcher, which passes the job on to a free
worker. As workers return results, they are marked as
free for the next task (scenario). Task management is
performed by the Simulation Manager to allow the
tracking of progress and job control (stop, pause, etc.).
This could be done entirely by the dispatcher, but
overall progress would be obscured and granular job
control not possible.
If the local network resources are insufficient, the
commercial PiCloud [11] service can be utilised for
distributing the computation. PiCloud employs the
Amazon Elastic Compute Cloud (EC2) for high-
performance computing and is very easy to set up. In
PyDES, the PiCloud version of the Simulation Manager
sends the entire list of tasks to the PiCloud server,
which then performs the distribution and execution of
those. Progress tracking is possible from PyDES, but
job control must be performed through the PiCloud web
service. As with Pyro, the results are returned as each
simulation is completed.

5. CONCLUSION
PyDES is a software framework for discrete-event
simulation, designed for the analysis of resource based
models that are scheduled to meet objectives. The
framework has been presented in some detail and
includes discussion of the scheduling approach, as well
as the software implementation in Python. The
Scenario data structure is introduced, along with
exemplars from two different applications written
within the framework: Naval Area Defence and;
Unmanned Maritime Operations. The main classes of
the base modules are detailed, including the Simulator,

Simulation Manager and Engagement Manager, in
addition to the Simulation Objects and queues that hold
the events and objectives. In the last section,
computational performance is addressed and some
features enabling the software to scale are presented.

REFERENCES

[1] G. van Rossum and F. L. J. Drake, The Python

Language Reference Manual: Network Theory
Ltd., 2011. http://python.org/

[2] W. L. Winston, Operations Research:
Applications and Algorithms, 4th ed.: Duxbury
Press, 2003

[3] T. E. Oliphant, "Python for Scientific
Computing," Computing in Science and Engg.,
vol. 9, pp. 10-20, 2007.
http://www.numpy.org/

[4] D. Ascher, P. F. Dubois, K. Hinsen, J.
Hugunin, and T. Oliphant, "Numerical
Python," Lawrence Livermore National
Laboratory2001

[5] J. D. Hunter, "Matplotlib: A 2D graphics
environment," IEEE Computing In Science &
Engineering, vol. 9, pp. 90-95, May 2007

[6] I. de Jong, "Pyro - Python Remote Objects,"
4.12 ed, 2012.
http://packages.python.org/Pyro4/

[7] E. Anderson, Z. Bai, C. Bischof, S. Blackford,
J. Demmel, J. Dongarra, J. Du Croz, A.
Greenbaum, S. Hammarling, A. McKenney,
and D. Sorensen, LAPACK Users' Guide,
Third ed.: Society for Industrial and Applied
Mathematics, 1999

[8] S. Behnel, R. Bradshaw, C. Citro, L. Dalcin,
D. S. Seljebotn, and K. Smith, "Cython: The
Best of Both Worlds," Computing in Science
Engineering, vol. 13, pp. 31 -39, March 2011.
http://cython.org/

[9] A. Klöckner, N. Pinto, Y. Lee, B. C.
Catanzaro, P. Ivanov, and A. Fasih,
"PyCUDA: GPU Run-Time Code Generation
for High-Performance Computing," Computing
Research Repository, vol. abs/0911.3456,
2009.
http://mathema.tician.de/software/pycuda

[10] A. Rigo and S. Pedroni, "PyPy's approach to
virtual machine construction," presented at the
Companion to the 21st ACM SIGPLAN
symposium on Object-oriented programming
systems, languages, and applications, Portland,
Oregon, USA, 2006. http://pypy.org/

[11] K. Elkabany, A. Staley, and K. Park,
"PiCloud," ed, 2012. http://www.picloud.com/

http://python.org/
http://www.numpy.org/
http://packages.python.org/Pyro4/
http://cython.org/
http://mathema.tician.de/software/pycuda
http://pypy.org/
http://www.picloud.com/

	1. INTRODUCTION
	2. DESCRIPTION OF THE PROCEDURE
	3. IMPLEMENTATION DETAILS
	3.1 Software Architecture
	3.2 The Scenario
	3.3 The Simulator
	3.4 The Simulation Manager

	4. COMPUTATIONAL SPEED AND SCALABILITY
	5. CONCLUSION
	REFERENCES

