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Abstract.  This paper presents a software framework for complex scheduling analysis with a primary focus on the 
domains of capability development and acquisition support.  The framework provides a system within which 
problem-dependent application models with stochastic components and processes can be constructed.  The framework 
and models are written in the Python programming language, making the development of new models relatively 
simple whilst allowing for complex interactions to be implemented.  For any application, discrete-event simulations 
of the model can be run many times in a Monte Carlo experiment to derive statistical measures of performance and 
effectiveness.  It is also possible to conduct sensitivity analyses and explore the parameter space of application 
scenarios by running different sets or batches of simulations.  The software comprises a core library for running each 
simulation, as well as libraries for the management of multiple simulations, graphical output generation and the 
creation of user interfaces.  It can be driven with scripts from the command-line environment, or controlled via a 
front-end graphical user interface.  The framework can also exploit multi-core systems and run in a distributed client-
server architecture either locally or remotely on the Amazon Elastic Compute Cloud (EC2) for scalable performance 
gains.  Two exemplary applications are discussed: Naval Area Defence (NAD) and; Unmanned Maritime Operations 
(UMO).  The NAD application has been developed to support decisions regarding system integration and operations 
for surface-air defence of naval assets.  The UMO application was developed to assess various concepts of operation, 
efficiency and crew workload in the use of unmanned maritime systems for large-area survey missions.  The general 
features of the software are presented, along with some examples of its use in each of the applications. 

1. INTRODUCTION 
PyDES is a software framework for complex scheduling 
analysis using discrete-event simulation (DES).  PyDES 
provides capabilities for sensitivity analysis and 
exploration of the parameter space, as well as a 
graphical user-interface and facilities for visualisation 
of the results.  At the heart of the framework is a 
simulation engine capable of coordinating the response 
of any number of resource-based models tasked with a 
list of objectives to meet.  In general terms, the 
simulator makes repeated attempts to schedule 
engagements against each of the outstanding objectives 
in a time-optimal manner, until all objectives have been 
engaged and all other requirements have been satisfied. 
PyDES is written in the Python [1] programming 
language and designed for ease of implementation and 
extensibility.  Python was chosen as the core language 
because it is highly abstracted and expressive, making 
model development relatively simple, yet powerful 
enough to run thousands of Monte Carlo simulations [2] 
with internal optimisations involving hundreds of 
models.  It is platform independent and there is also a 
large community of Python programmers around the 
world - particularly in the scientific domain - enabling 
the leverage of many open-source projects, such as 
Numpy [3, 4] for numerical computation, Matplotlib [5] 
for plotting and Pyro [6] for distributed computing. 
With most visual programming software solutions, 
often only the most basic types of processes and 
interactions, such as generic servers and queues, can be 
implemented using the graphical user-interface.  
Constructing a realistic simulation from these graphical 
building blocks can be a challenging task and the 

resulting models an elaborate hierarchy of blocks within 
blocks.  Moreover, the developer will invariably reach a 
point at which scripts must be written within each 
model in order to codify more detailed behaviours.  
Sometimes, the integration of complex interactions can 
be extremely difficult or even impossible.  With 
PyDES, the models ‘live’ within the code and are not 
limited by any graphical representation.  The developer 
has complete control over the models, their interactions 
and even the procedures for scheduling and engagement 
in the event queue.  The simulation and models also 
benefit from the object-oriented nature of the language 
with features such as encapsulation, polymorphism and 
inheritance. 
Rather than offering a ‘one-solution-fits-all’ approach to 
modelling in the discrete-event time domain, PyDES is 
aimed at addressing a particular class of problem.  That 
is, as noted above, the repeated scheduling of resource-
based engagements against a list of objectives in a time-
optimal manner.  This paper will first present a 
description of the scheduling approach used and the 
representation of the scenario specific to each 
application, followed by a more detailed description of 
the main classes used by the simulation.  Last, the issue 
of computational speed is discussed, and the scalability 
features of the framework designed to mitigate those. 

2. DESCRIPTION OF THE PROCEDURE 
In generic terms, a scenario is composed of a number of 
hosts - each of which holds a hierarchy of resources - 
and a number of generators - each holding a list of 
objectives.  The term objective is loosely defined and 
dependent on the application being modelled.  Every 
objective, once activated, must be engaged by a set of 
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resources, typically resident on one or more of the 
hosts.  This is accomplished by scheduling 
engagements, which encapsulate a combination of start-
times and durations required by each resource in 
meeting the objective.  These engagements can be 
managed individually, by each host, or in a coordinated 
manner across several hosts.  In PyDES, each 
Engagement Manager can be associated with several 
hosts, but each host can only have one Engagement 
Manager. 
Nominally, the resources must be scheduled according 
to an engagement profile.  The form of that profile 
being based on the invoking event.  Examples of the 
engagement profile for both NAD and UMO 
applications are presented in the following section.  
There are potentially many ways by which a set of 
resources can be selected to meet an objective.  The 
most naive approach will just select the first, or 
randomly, from each type of resource available at that 
time.  However, there is no guarantee that all of the 
resources will be available at the appropriate time.  
Another approach is to select a set and then wait until 
they are all available, but this can lead to large delays or 
an inability to engage every objective.  A better 
approach is to search through all combinations of 
resources to determine one that will engage the 
objective in a minimum time.  This exhaustive approach 
will yield an optimal set, but may take some time to 
process, particularly if there are a substantial number of 
resources.  Therefore, the best approach will attempt 
some form of combinatorial optimisation for each 
engagement.  One of the main features that differentiate 
PyDES from many existing DES packages is its ability 
to perform this inner-loop optimisation of the resources 
selected.  That can range from an exhaustive search for 
the best possible combination of resources, or a search 
of the subset defined by some heuristic.  In PyDES, the 
resources are first sorted according to their idle-time 
and then some number of the top combinations, defined 
by the user, chosen for exhaustive search. 
Another level of complexity arises if there are several 
objectives to be engaged at any one time, or another 
event has prompted a reassessment of the currently 
scheduled engagements.  The objectives must be 
prioritised, and a non-conflicting set of resources 
scheduled against each.  There are currently two 
approaches employed by the Engagement Manager: 
1. Schedule an engagement for the highest priority 

objective if and only if resources are available at 
the time of assessment, plus a check at some future 
time when resources are expected to be available 
next and; 

2. Schedule tentative engagements against all 
objectives, in order of priority, with non-conflicting 
resource profiles. 

The first approach is much faster, but the advantage of 
the second is that one can ensure a maximum number of 
objectives are engaged.  That is, the ordering of 
schedules can be based on factors supplementary to the 
objective priority.  In PyDES, the first is termed “Just-

in-Time” (JIT) scheduling and the second, “Objective-
based Priority” (OBP) scheduling. 

3. IMPLEMENTATION DETAILS 

3.1 Software Architecture 
The PyDES framework is divided into front-end and 
back-end components.  As illustrated in Figure 1, the 
front-end reads input data in the form of a Scenario data 
structure, which is then passed to the back-end for 
simulation.  Results are then returned to the front-end 
for output and display.  The front-end can take the form 
of a script or a graphical user interface.  A script allows 
greater control over the simulation, as well as the 
definition of additional classes, whereas the GUI tends 
to be easier to use for those not familiar with the Python 
environment. 

 
Figure 1: Generic Program Flowchart 

 
The Scenario data structure can either be created from 
another Python script, or written explicitly in the XML 
or YAML format.  It represents the taxonomy of 
resources and objectives in the relevant application and 
their attributes in parametric form.  Both script and GUI 
can facilitate modification to the scenario and both can 
export the results to file in addition to generating 
interactive graphical output. 
The simulation manager is responsible for a number of 
tasks associated with the execution of the simulation(s).  
Most importantly, for scenario batches, it distributes 
and manages the tasks sent to individual simulators and 
then amalgamates the results returned from each.  The 
tasks comprise, among other fields, the Scenario data 
structure and parameters controlling the execution of 
the simulation, such as the number of runs. 
When passed to a simulation object, the Scenario 
structure is replicated with objects representing each 
resource and objective in place of the dictionary values.  
Those objects are then allowed to interact at designated 
times in the event queue.  To start the simulation, a 
‘start’ event is fired and an initial interaction takes 
place, spawning a new set of events.  Thereafter, events 
are fired and spawned as interactions occur repeatedly 
until no future events exist in the queue. 
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3.2 The Scenario 
The Scenario data structure supplied to the PyDES 
simulation manager and simulator is a Python 
dictionary consisting of lists of smaller dictionaries 
within which the resource and objective parameters are 
stored.  Inside the simulation manager, the values for 
each are used to create the corresponding object. 
For the NAD application, the host and generator are 
represented by Platform and Target objects, 
respectively.  There is also a list of Engagement 
Managers referenced in the scenario.  Resources on 
each Platform consist of Search Radars, Illuminators 
(which also represent the Fire Control Radar, FCR), 
Launchers and an Engagement Manager.  The 
Launchers contain several SAM Types; individual SAM 
objects are created within the simulator.  Each Target 
consists of a number of Threat Sectors and Engagement 
Managers.  Each of the Threat Sectors contain several 
ASM Types; individual ASM objects are created within 
the simulator and are themselves stored inside Objective 
objects.  The skeleton structure is listed below: 

 
 
where the asterisk, ‘*’, represents one or more 
parameter keys and/or values. 
In simple terms, the scenario is simulated as follows: 
1. The ASM’s are detected by each Engagement 

Manager as they come into the Platform’s Search 
Radar range. 

2. The Engagement Manager(s) respond by 
scheduling a profile of Illuminators, Launchers and 
a salvo of SAM’s against the ASM. 

3. When all resource-based events related to the 
engagement are complete, a post-fire evaluation 
(PFE) phase is conducted to determine if intercept 
was successful. 

4. If successful, no further action is taken.  If 
unsuccessful, another profile of resources are 
scheduled against the ASM. 

5. The process repeats until all ASM’s have either 
been intercepted or detonated by impacting the 
Target. 

 

Figure 2 depicts the basic engagement profile for the 
NAD scenario. 

 
Figure 2: NAD Application Engagement Profile  

 
The start-time for the engagement is dependent on the 
anticipated intercept(s) time, which is determined by the 
designated range of intercept and the availability of all 
resources.  The availability of each resource is 
determined by the list of existing/scheduled periods and 
the start-time and duration required by the engagement.  
Durations can be static (fixed), such as the Pre-launch 
delay, or dynamic, such as the Illumination time, which 
depends on the flyout time, the SAM illumination 
mode, as well as the terminal guidance duration. 
The full time-history for a self-defence (single Target) 
scenario is shown in Figure 3. 

 
Figure 3: NAD Time-History Example 

 
The NAD application has been used to determine many 
factors related to anti-ship missile defence, including 
Probability of Survival and Keep-Out Distance for 
various configurations and threats. 
For the UMO application, the host and generator are 
represented by Platform and Search Area objects, 
respectively.  As with all applications, there is also a list 
of Engagement Managers referenced in the scenario.  
Resources on each Platform consist of Autonomous 
Vehicles (AV’s), Launchers, Rechargers, Support 
Teams and an Engagement Manager.  The AV’s contain 
several Sensors and the Support Teams contain a 
number of Managers, each of which is in charge of 
several Crew Members.  Each Search Area consists of a 
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Scenario = { 

  'Platforms' : [ { * , 

    'Search Radars' : [ { * } ], 

    'Illuminators' : [ { * } ], # also Fire Control Radar 

    'Launchers' : [ { * , 

      'SAM Types' : [ { * } ] # Surface-Air Missile 

    } ], 

    'Engage Manager' : * 

  } ], 

  'Targets' : [ { * , 

    'Threat Sectors' : [ { * , 

      'ASM Type' : [ { * } ] # Anti-Ship Missile 

    } ], 

    'Engage Managers' : [ * ] 

  } ], 

  'Engage Managers' : [ * ] 

} 



  

number of Track Areas and Engagement Managers.  
There is a list of Track Paths which define the AV 
survey paths to be used inside the Track Areas.  Each of 
the SubObject Fields contain several SubObject Types; 
individual SubObject objects are created within the 
simulator and are themselves stored inside Objective 
objects.  The skeleton structure is listed below: 

 
 
The UMO scenario is simulated as follows: 
1. The Track Areas are added to the list of Objectives 

in order of distance from the Platform. 
2. The Engagement Manager(s) respond by 

scheduling a profile of AV’s, Launchers, 
Rechargers and Support Teams to survey the Track 
Area with a pre-defined Track Path.  The Support 
Teams consist of a Manager, plus Crew Members 
with roles as Deck-hand, Launch-hand, Analyst and 
Operator (if required). 

3. During the search phase, any SubObject that the 
AV passes over and detects is flagged as such. 

4. When all resource-based events related to the 
engagement are complete, including the analysis, 
an evaluation is conducted to determine if a further 
reacquire mission is necessary for any of the 
SubObjects detected. 

5. If more data is deemed necessary for some or all of 
the SubObjects, a reacquire mission is scheduled 
for them.  The reacquire mission has a different 
profile and Track Path, visiting each of the 
SubObjects and conducting local searches one-by-
one in an order determined by a ‘Travelling 
Salesman’ algorithm. 

6. The process repeats until all Track Areas have been 
surveyed and no SubObjects remain to be 
reacquired. 

 

Figure 4 depicts the basic engagement profile for the 
UMO scenario. 

 
Figure 4: UMO Application Engagement Profile 

 
The full time-history for a coordinated survey scenario 
with two Support Teams is shown in Figure 5.  The 
additional 4 blocks in the Crew Member’s state lists 
represents periods of down-time during which they 
cannot be scheduled for any engagement. 

 
Figure 5: UMO Time-History Example 

 
The UMO application has been used to assess differing 
operating procedures in regard to such factors as survey 
efficiency, clearance rates and crew workload. 

3.3 The Simulator 
The Simulator defines how the Scenario operates 
logistically and therefore each application must derive 
its own version from the base Simulator class.  The 
class attributes consist of a collection of Simulator 
State-based Objects (SSO’s) representing the resources, 
an Event Queue, Objective List and an Engagement 
Manager.  Class methods include functions for 
initialisation, simulation and all of the functions that 
constitute events as well as any supplementary methods 
involved in the event-driven interactions.  The event 
methods must include ‘start’ and ‘check’ operations as a 
minimum.  The 'start' function simply starts the 
simulation and the ‘check’ function provides the 
Engagement Managers with an opportunity to schedule 
Engagements against any outstanding Objectives. 
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Scenario = { 

  'Platforms' : [ { * , 

    'AVs' : [ { * , # Autonomous Vehicles 

      'Sensors' :  : [ { * } ] 

    } ], 

    'Launchers' : [ { * } ], 

    'Rechargers' : [ { * } ], 

    'Support Teams' : [ { * , 

      'Managers' : [ { * , 

        'CrewMembers' : [ { * } ] 

      }] 

    } ], 

    'Engage Manager' : * 

  } ], 

  'Search Areas' : [ { * , 

    'Track Areas' : [ { * } ], 

    'Engage Managers' : [ * ] 

  } ], 

  'Track Paths' : [ { * } ], 

  'SubObject Fields' : [ { * , 

    'SubObject Types' : [ { * } ] 

  } ], 

  'Engage Managers' : [ * ] 

} 



  

The most important method of the Simulator object is 
the ‘schedule’ function, which inserts states into each of 
the SSO’s state lists corresponding to the engagement 
supplied.  The State List attribute of each SSO is a time-
ordered list of states that have been allocated, also 
known as a state trajectory.  At a minimum, each state 
consists of a start-time, duration, description and 
identifier.  Some SSO’s also have a list of references to 
objects (typically other SSO’s) and a start-position and 
shift.  For example, the Illuminator SSO utilises the 
start-position and shift to represent its initial slew-angle 
and linear angular displacement.  Thus, the state slew-
angle displacement can be calculated from the 
Illuminator’s slew-rate property and state duration.  
Conversely, the state duration can be calculated from 
the initial slew-angle and displacement.  Various 
functions exist to navigate and manipulate the State 
List, such as finding states, inserting and deleting states, 
as well as functions to check for the object’s 
availability, or gaps in its State List. 
The Event Queue constitutes a time-ordered list of 
events to be executed, or fired.  Each event is a 
dictionary object consisting of a start-time, an operation 
tag, a unique identifier and an arbitrary object (typically 
an SSO).  Unlike the SimStateObject’s State List, there 
is no requirement for a duration to be stored; the event 
simply indicates that a set of specific actions are to be 
taken at that time, including the creation of other events. 
The Objective List is a priority-ordered list of 
objectives.  Objectives in the Objective List are Python 
objects instantiated from the Objective class.  
Objectives have a unique identifier, a list of objects, a 
detection status flag and an engagement status flag.  The 
priority is defined by the application.  For example, the 
NAD application prioritises threats according to their 
expected time of impact and consequently attempts to 
engage them in that order.  The default options for 
detection status are ‘undetected’ and ‘detected’.  Those 
for the engagement status are ‘unscheduled’, 
‘scheduled’, ‘engaged’ and ‘noengage’.  An objective 
that has been ‘detected’ cannot be ‘undetected’ and one 
that has been ‘engaged’ cannot be (re-) ‘scheduled’. 
As with the SSO’s State List functions, the Objective 
List also has functions to navigate and manipulate the 
list, such as retrieving particular objectives, inserting 
and deleting objectives, as well as functions to set the 
detection status and engagement status flags. 
The Engagement class holds all resources and the 
pertinent (State List) utilisation times to engage a 
specific objective.  Engagements are associated with a 
particular Engagement Manager.  The Engagement 
class encapsulates the scheduling profile for its 
combination of resources, such as calculating the 
relative start-times for each resource and determining 
the minimum time until a valid engagement is possible. 
For the NAD application, there are basically two types 
of limiting conditions: range-limited engagements and; 
resource-limited engagements.  The range-limited 
engagements can be imposed by launch sectors, 
engagement sectors and SAM ranges.  Resource-limited 
engagements are imposed by both the Illuminator/FCR 

and Launcher.  The minimum time until valid 
engagement is determined by searching through the list 
of times corresponding to limiting ranges and the list of 
limiting times, as defined by existing active periods in 
each resource’s State List.  For each time, the relative 
start time and duration for each associated resource - the 
engagement profile - is calculated and then checked for 
availability.  The set of start times corresponding to the 
minimum can then selected from all valid profiles and 
used for scheduling the resources, performed by the 
Engagement Manager in the next step. 
For the UMO application, there are only resource-
limited engagements, although the number of resources 
associated with each engagement is much larger, so 
many more State List times need to be checked in order 
to find a minimum, valid engagement.  Certain 
resources, such as the Deck-hand, Launcher and 
Launch-hand are also used multiple times in the one 
profile, further increasing the number of times checked. 
The relative start-times and durations for each resource 
within a profile can be either fixed or variable.  In the 
former case, the time and duration calculations are 
straightforward and some efficiencies can be exploited.  
However, the latter case may depend on any number of 
factors, such as the resource’s current position, or some 
randomly determined variable, thus requiring several 
function calls for each time checked. 
The Engagement Manager class manages the 
engagements for all objectives in the Objective List. 
There are currently two types of engagement policies: 
Just-in-time and Prioritised scheduling.  Just-in-time, or 
late scheduling refers to the policy of scheduling an 
engagement against the highest-priority objective as 
soon as possible.  In addition, all remaining (detected), 
unscheduled objectives are examined for possible 
engagement and a ‘check’ event is inserted into the 
Event Queue at the minimum start time for those.  In 
prioritised scheduling, all detected, unscheduled 
objectives are cleared and then re-scheduled according 
to the order of priority in Objective List, each time a 
‘check’ event is fired.  However, no ‘check’ events are 
explicitly inserted within the engagement process itself.  
Compared to Just-in-time scheduling, there are both 
advantages and disadvantages of this policy.  The main 
advantage is that all outstanding (detected, 
unscheduled) objectives are assessed and engaged at the 
same time, possibly eliminating any bias which may 
occur in the just-in-time case by scheduling some 
objectives at a later time.  The main disadvantage is that 
certain resources can be “locked out” from being 
employed to engage other objectives by scheduling too 
early.  The difference, albeit subtle, can sometimes 
result in non-optimal scheduling or, in the worst case, 
outstanding objectives that are unable to be engaged at 
all. 

3.4 The Simulation Manager 
The Simulation Manager creates batches of scenarios to 
be run by the simulator(s).  It can run the simulations 
either in the same, single process, or multiple processes.  
It can be run as a synchronous (blocking) client, which 



  

sends individual scenarios to any servers as they 
become available and receives results from them as 
their simulations are completed. The servers can be run 
internally, using the Pyro framework, or on the Amazon 
EC2 cloud, using the PiCloud service. 
Scenario batches are defined by parameter lists within 
the Scenario data structure.  Every parameter within the 
Scenario data structure is assigned a type, such as 
floating-point scalar, integer, string or list.  A parameter 
space is consequently defined for any value within the 
struct where a list of such parameters replaces a single 
parameter.  For example, if the floating-point scalar 
‘speed’ parameter of the ‘SAM Types’ list-element dict 
was replaced by a list of floating-point values, the 
parameter space would span that list.  If the ‘position’ 
two-list (x, y) of the ‘Platforms’ list-element dict was 
replaced by a list of two-lists, a sequence of Scenarios 
with varying platform position would be run. 
For the area-defence scenario depicted in Figure 6, the 
effect of varying the Target position is illustrated with 
the Probability-of-Survival (Ps) heat-map, shown in 
Figure 7. 

 
Figure 6: Area Defence Scenario Plan View 

 
Figure 7: Probability of Survival for a NAD Scenario 

In the second figure, green indicates a high Ps for the 
Target and red, a low Ps. 
Implementing a number of parameter lists within the 
same Scenario data structure has the effect of defining a 
complete parameter space, comprising every 
combination of parameters represented by lists.  Due 
care must therefore be taken to avoid blowing out the 
size of the parameter space to explore.  In the above 
examples, if we were to define lists of M ‘speed’ values 
and N ‘position’ values, a total of M x N Scenarios 
would be exercised. 
Thus we are left with the problem of simultaneously 
varying parameters.  For example, if the Platform’s 
‘engageCentre’ parameter varied according to the 
Target's ‘position’ parameter, we would not define two 
M-lists since that would cause M^2 combinations to be 
explored.  In order to incorporate this in the correct 
manner, we need to replace one parameter value by 
either a function or an execution string which produces 
the desired effect.  In the example given, this would 
entail assigning a function which calculates the 
Platform’s ‘engageCentre’ based on the Target’s 
‘position’ parameter within the same Scenario data 
structure. 
In summary, the Scenario can hold a static parameters, 
as well as dynamic parameters. The dynamic parameters 
can be either Batch Variables, which represent a 
parameter subspace to explore, and Function Variables, 
which represent a relationship within the data structure. 

4. COMPUTATIONAL SPEED AND 
SCALABILITY 
When compared with compiled languages, like C++ or 
even Java, the sole limitation of the Python language is 
speed.  For many applications, PyDES will be fast 
enough.  However, there are various ways in which this 
shortcoming can be addressed.  Namely, by 
incorporating one or more of the following projects: 
Numpy, Cython, PyCUDA/PyOpenCL and PyPy. 
Numpy is a library for numerical computation and can 
be used to some extent to vectorise some of the 
rudimentary list operations.  Numpy makes use of 
optimised linear algebra libraries such as BLAS and 
LAPACK [7], so is very fast for some operations.  
Cython [8] simplifies the generation of C++ extension 
modules for the CPython runtime, by facilitating 
embedding C code directly in the Python code.  
However, integration would require some of the 
functions to be written in C++, which may be too large 
a task.  PyCUDA/PyOpenCL [9] packages enable 
access to the GPU for accelerated parallel computation, 
but also require low-level calls to the API and 
consequently a significant amount of re-coding. 
PyPy [10] is an alternative implementation of the 
Python runtime, which incorporates a JIT compiler for 
potential speed-up and memory conservation.  Of the 
projects outlined, PyPy shows the most promise, since it 
is highly compatible with the standard Python 
implementation.  No additional code is required, and no 
special library calls need be made.  Moreover, the first 
three solutions are targeted at inner-loop optimisation, 



  

whereas PyDES employs many complex outer-loops 
which would lessen their benefit. 
The other approach to increasing performance, and one 
that has been adopted in the framework, is to make the 
system scalable.  PyDES has options for scaling 
vertically - by taking advantage of multiple CPU cores - 
as well as horizontally - by exploiting additional 
computing instances on the network.  Parallel 
computation is possible with the multiprocessing 
library, which is now included in the standard Python 
distribution.  Distributed computation is facilitated with 
the Pyro Remote Objects library.  By refraining from 
using any of the above projects, PyDES has remained a 
‘pure Python’ software package, which yields many 
advantages: not the least of which is that it continues to 
be truly independent of operating system and hardware. 
Pyro provides a system for employing remote objects 
over the network.  It is very straightforward to construct 
a client/server architecture for distributed computation.  
The Pyro library consists of a Name server and a 
dispatcher, normally deployed on the same 
‘management’ server, as well as a number of workers 
(servers), deployed on ‘processing’ servers.  The 
dispatcher is added to the nameserver, then workers are 
added to the dispatcher when started.  In PyDES, the 
Pyro version of the Simulation Manager contacts the 
nameserver and receives a list of workers through the 
dispatcher.  It then sends scenarios from the task queue 
to the dispatcher, which passes the job on to a free 
worker.  As workers return results, they are marked as 
free for the next task (scenario).  Task management is 
performed by the Simulation Manager to allow the 
tracking of progress and job control (stop, pause, etc.).  
This could be done entirely by the dispatcher, but 
overall progress would be obscured and granular job 
control not possible. 
If the local network resources are insufficient, the 
commercial PiCloud [11] service can be utilised for 
distributing the computation.  PiCloud employs the 
Amazon Elastic Compute Cloud (EC2) for high-
performance computing and is very easy to set up.  In 
PyDES, the PiCloud version of the Simulation Manager 
sends the entire list of tasks to the PiCloud server, 
which then performs the distribution and execution of 
those.  Progress tracking is possible from PyDES, but 
job control must be performed through the PiCloud web 
service.  As with Pyro, the results are returned as each 
simulation is completed. 

5. CONCLUSION 
PyDES is a software framework for discrete-event 
simulation, designed for the analysis of resource based 
models that are scheduled to meet objectives.  The 
framework has been presented in some detail and 
includes discussion of the scheduling approach, as well 
as the software implementation in Python.  The 
Scenario data structure is introduced, along with 
exemplars from two different applications written 
within the framework: Naval Area Defence and; 
Unmanned Maritime Operations.  The main classes of 
the base modules are detailed, including the Simulator, 

Simulation Manager and Engagement Manager, in 
addition to the Simulation Objects and queues that hold 
the events and objectives.  In the last section, 
computational performance is addressed and some 
features enabling the software to scale are presented. 
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